K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

- Tổng các hệ số của 1 đa thức A(x) bất kì bằng giá trị của đa thức đó tại x = 1. Vậy tổng các hệ số của đa thức :

A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005

=0.(3+4.1+12)2005=0=0.(3+4.1+12)2005=0

Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là 0 .

3 tháng 6 2019

Cái này bạn phải nhớ công thức tổng quát như thế này nè:

Tổng các hệ số của một đa thức P(x) bất kỳ bằng giá trị của đa thức đó tại x=1.

Vật tổng các hệ số của đa thức đó là:

\(A\left(x\right)=\left(3-4\cdot1+1^2\right)^{2004}\cdot\left(3+4\cdot1+1^2\right)^{2005}\)

\(\Rightarrow A\left(x\right)=0\)

Vậy tổng các hệ số của A(x) bằng 0.

26 tháng 5 2020

Sau khi bỏ dấu ngoặc(thực hiện phép nhân)ta sẽ được đa thức :

\(P\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) với \(n=2\left(2008+2009\right)=8034\)

Thay x = 1 thì giá trị đa thức là P(1) đúng bằng tổng các hệ số \(a_n+a_{n-1}+...+a_1+a_0\)

Ta có : \(P\left(1\right)=\left(8\cdot1^2+3\cdot1-10\right)^{2008}\cdot\left(8\cdot1^2+1-10\right)^{2009}=-1\)

Vậy tổng của hệ số của đa thức là -1

2 tháng 3 2017
  • -6x3 + x2 + 5x - 2 = 0

=> -6x3 - 6x2 + 7x2 + 7x - 2x - 2 = 0

=> -6x2(x+1) + 7x(x+1) - 2(x+1) = 0

=> (x+1)(-6x2+7x-2) = 0

=> (x+1)(x2-\(\frac{7}{6}x+\frac{1}{3}\)) = 0

\(\Rightarrow\left(x+1\right)\left(x-\frac{1}{2}\right)\left(x-\frac{2}{3}\right)=0\)

=> x = -1 hoặc x = 1/2 hoặc x = 2/3

  • 3x3 + 19x2 + 4x - 12 = 0

=> 3x3 + 3x2 + 16x2 + 16x - 12x - 12 = 0

=> (x+1)(3x2+16x-12)=0

=> (x+1)\(\left(x^2+\frac{16}{3}x-4\right)=0\)

=> (x+1) \(\left(x-\frac{2}{3}\right)\left(x+6\right)=0\)

=> x = -1 hoặcx = 2/3 hoặc x = -6

  • 2x3 - 11x2 + 10x + 8 = 0

=> 2x3 - 4x2 - 7x2 + 14x - 4x + 8 = 0

=> 2x2(x - 2) - 7x(x - 2) - 4(x - 2) = 0

=> (x - 2)(2x- 7x - 4)=0    

=> (x - 2)(\(x^2-\frac{7}{2}x-2\)) = 0

=> \(\left(x-2\right)\left(x-4\right)\left(x+\frac{1}{2}\right)=0\)

=> x = 2 hoặc x = 4 hoặc x = -1/2

6 tháng 7 2017

a) Ta có : 2x2 + 3x = 0

<=> x(2x + 3) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)