Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=n^2\left(n^2+n+1\right)\)
Để A là số chính phương thì \(n^2=n^2+n+1\)(1) hoặc \(n=n\left(n^2+n+1\right)\)(2) hoặc \(1=n^4+n^3+n^2\)(3)
\(\left(1\right)\Leftrightarrow n=-1\left(tm\right)\)
\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)
\(\left(3\right)\Leftrightarrow n=-1\)
Vậy n=0 hoặc n=-1
a, Với n = 1 thì \(n^3-n+2=1^3-1+2=2\)
=> Không phải là số chính phương
Với n = 2 thì \(n^3-n+2=2^3-2+2=8-2+2=8\)
=> Không phải là số chính phương
Với n > 2 thì \(n^3-n+2\)không phải là số chính phương vì \(\left[n-1\right]^2< n^3-\left[n-2\right]< n^2\)
b, Với n = 1 thì \(n^4-n+2=1^4-1+2=2\)
=> Không phải là số chính phương
Với n = 2 thì \(n^4-n+2=2^4-2+2=16=4^2\)=> Là số chính phương
Với n > 2 thì \(\left[n^2-1\right]^2< n^4-\left[n-2\right]< \left[n^2\right]^2\)
=> Không phải là số chính phương
Vậy n = 2
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left[\left(n^2-4\right)+5\right]\)
\(=\)\(n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Lại có : \(n\in N\)
=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số tự nhiên liên tiếp
=> \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮10\)
Mà \(5\left(n-1\right)n\left(n+1\right)⋮10\)
=> \(n^5-n⋮10\)
=> \(n^5-n\)có chữ số tận cùng là 0
=> A có chữ số tận cùng là 2
=> A ko phải là số chính phương
Vậy ko tìm được giá trị nào của n thỏa mãn đề bài
Đặt \(n^2+n+6=a^2\)
\(\Leftrightarrow4n^2+4n+24=4a^2\)
\(\Leftrightarrow4n^2+4n+1+23=4a^2\)
\(\Leftrightarrow\left(2n+1\right)^2+23=4a^2\)
\(\Leftrightarrow4a^2-\left(2n+1\right)^2=23\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)
\(\forall n\in N\)thì \(2a+2n+1>2a-2n-1>0\)
\(\Rightarrow\left\{{}\begin{matrix}2a+2n+1=23\\2a-2n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)
Vậy n = 5