K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

1+2+3+6+12+...+1536

Bài 1 : 

Gọi số tự nhiên phải tìm là \(ab\)

\(\left(a,b\in N,1\le a\le9,0\le b\le9\right)\)

tỉ số giữa ab và a+b là k:

Ta có ; \(k=\frac{ab}{a+b}=\frac{10+b}{a+b}\le\frac{10a+10b}{a+b}\)\(=\frac{10.\left(a+b\right)}{a+b}=10\)

\(k=10\Leftrightarrow b=10b\Leftrightarrow b=0\)

Vậy k lớn nhất bằng 10 khi :

\(b=0,a\in\left(1,2,...,9\right)\)

Các số phải tìm là \(a0\) với a là chữ số khác 0

Chúc bạn học tốt ( -_- )

21 tháng 8 2019

Em vào thống kê hỏi đáp của chị mà xem bài 1

21 tháng 8 2019

thanks

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you

Bài 1 : 

Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)

Từ  \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay  \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)

Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)

Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)

Chúc bạn học tốt ( -_- )

Bài 2 : 

\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)

Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :

\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)

Chúc bạn học tốt ( -_- )

Mình có bài toán hay muốn chia sẻ :1 a Tìm số tự nhiên có hai chữ số sao cho tỉ số giữa số đó với tổng các chữ số của nó là lớn nhất  , nhỏ nhất .   b Tìm số tự nhiên có ba chữ số sao cho tỉ số giữa số đó với tổng các chữ số của nó là lớn nhất . nhỏ nhất .                                                                     Bài giải   a Ta gọi số có hai...
Đọc tiếp

Mình có bài toán hay muốn chia sẻ :

1 a Tìm số tự nhiên có hai chữ số sao cho tỉ số giữa số đó với tổng các chữ số của nó là lớn nhất  , nhỏ nhất .

   b Tìm số tự nhiên có ba chữ số sao cho tỉ số giữa số đó với tổng các chữ số của nó là lớn nhất . nhỏ nhất .

                                                                     Bài giải   

a Ta gọi số có hai chữ số là ab (a , b E N , 0 < a ,b< hoặc = 9  )

Ta có \(\frac{ab}{a+b}\) = \(\frac{10a+b}{a+b}\) = \(\frac{10a\left(a+b\right)-9b}{a+b}\) = 10 - \(\frac{9b}{a+b}\)< hoặc = 10

Dấu = sảy ra khi b = 0 , a tùy ý

Vậy số ab cần tìm để \(\frac{ab}{a+b}\) lớn nhất là a0 với a là chữ số khác 0

Mặt khác \(\frac{ab}{a+b}\) = \(\frac{10a+b}{a+b}\) = \(\frac{100a+10b}{10\left(a+b\right)}\) 

                              =\(\frac{19\left(a+b\right)+81a-9b}{10\left(a+b\right)}\) = \(\frac{19}{10}\) + \(\frac{9\left(9a-b\right)}{10\left(a+b\right)}\) > hoặc = \(\frac{19}{10}\) 

(vì a > hoặc = 1 , b < hoặc = 9)

Dấu = xảy ra khi a = 1 và b = 9

Vậy số ab cần tìm để \(\frac{ab}{a+b}\) nhỏ nhất bằng 19

b Gọi số có ba chữ số là abc

(a,b,c E N,0 < a < hoặc = 9 , 0 < hoặc = b  < hoặc = 9 , 0 < hoặc = c < hoặc = 9)

Ta có :\(\frac{abc}{a+b+c}\) = \(\frac{100a+10b+c}{a+b+c}\) = \(\frac{10\left(a+b+c\right)-90b-99b}{a+a+c}\) 

                                 = 100 - \(\frac{90b+99b}{a+b+c}\) < hoặc = 100

Dấu = xảy ra khi b = c = 0 

Mặt khác :\(\frac{abc}{a+b+c}\) = \(\frac{100a+10b+c}{a+b+c}\)\(\frac{1900a+190b+19c}{19\left(a+b+c\right)}\)

                                      = \(\frac{199\left(a+b+c\right)+1701a-9b-180c}{19\left(a+b+c\right)}\)

                                      =\(\frac{199}{19}\) + \(\frac{1701-9b-180c}{19\left(a+b+c\right)}\) > hoặc = \(\frac{199}{19}\)

(vì a > hoặc= 1 , b,c < hoặc = 9)

Dấu = xảy ra khi a = 1 ,b = 9 , c = 9

Các bạn xem mình làm đúng chưa nha

1
24 tháng 4 2017

Mấy bài này lp 6 mà mk hok chưa bao h thấy, công nhận là hay đó bn, có điều mk đọc chẳng hỉu, hihi,hogogogbobo

23 tháng 3 2018

Áp dụng tính chất dãy tỉ số:

a/b <c/d => a/b < c+a/d+b 

Mà a/b < c/d => a+c/b+d < c+c/d+d= 2c/2d=c/d

Vậy a/b < a+c/b+d <c/d nếu a/b<c/d