K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 5 2019

Bài 1:

\(2c=8\Rightarrow c=4\)

Gọi phương trình (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)

Do A thuộc (E) nên \(\frac{0}{a^2}+\frac{9}{a^2-16}=1\Rightarrow a^2=25\)

Phương trình (E): \(\frac{x^2}{25}+\frac{y^2}{9}=1\)

Bài 2:

\(2a=10\Rightarrow a=5\)

\(e=\frac{c}{a}\Rightarrow c=e.a=\frac{3}{5}.5=3\)

Phương trình elip:

\(\frac{x^2}{25}+\frac{y^2}{16}=1\)

NV
3 tháng 5 2019

Câu 3:

\(x-2y+3=0\Rightarrow x=2y-3\)

Thay vào pt đường tròn ta được:

\(\left(2y-3\right)^2+y^2-2\left(2y-3\right)-4y=0\)

\(\Leftrightarrow5y^2-20y+15=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=3\Rightarrow x=3\end{matrix}\right.\)

Tọa độ 2 giao điểm: \(A\left(-1;1\right)\)\(B\left(3;3\right)\)

Câu 4:

Gọi d' là đường thẳng song song với d \(\Rightarrow\) pt d' có dạng \(x-y+c=0\)

Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)

\(\Rightarrow\frac{\left|0.1-0.1+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c\right|=2\Rightarrow c=\pm2\)

Có 2 pt đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y+2=0\\x-y-2=0\end{matrix}\right.\)

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

31 tháng 5 2017

a) Đường tròn (T) có tâm là điểm (2 ; 1) và có bán kính bằng \(\sqrt 2\)

b) \(-3\le m\le1\)

c) Có hai tiếp tuyến với (T) thỏa mãn đề bài là :

\({\Delta _1}:x + y - 1 = 0\)

\({\Delta _2}:x + y - 5 = 0\)

4 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

26 tháng 4 2017

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)

CHỦ ĐỀ PHƯƠNG TRÌNH ĐƯỜNG THẲNG Bài 1) Viết PTTQ của đường thẳng d a) Qua M(-1;-4) và song song với đường thẳng 3x+5y-2=0 b) Qua N(1;1) và vuông góc với đường thẳng 2x+3y+7=0 Bài 2) Viết PT đường thẳng đi qua M(2;5) và cách đều hai điểm P(-1;2),Q(5;4) Bài 3) Cho đường thằng d1: 2x-y-2=0 ; d2: x+y+3=0 và điểm M(3;0). Viết phương trình đường thẳng D đi qua M, cắt d1 và d2 lần lượt tại điểm A và B...
Đọc tiếp

CHỦ ĐỀ PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bài 1) Viết PTTQ của đường thẳng d

a) Qua M(-1;-4) và song song với đường thẳng 3x+5y-2=0

b) Qua N(1;1) và vuông góc với đường thẳng 2x+3y+7=0

Bài 2) Viết PT đường thẳng đi qua M(2;5) và cách đều hai điểm P(-1;2),Q(5;4)

Bài 3) Cho đường thằng d1: 2x-y-2=0 ; d2: x+y+3=0 và điểm M(3;0). Viết phương trình đường thẳng D đi qua M, cắt d1 và d2 lần lượt tại điểm A và B sao cho M là trung điểm của đoạn thẳng AB.

Bài 4) Cho tam giác ABC biết A(2;1) B(-1;0) C(0;3)

a) Viết PTTQ của đường cao AH

b)Viết PTTQ của đường trung trực của đoạn thẳng AB

c) Viết PTTQ của đường thẳng BC

d) Viết PTTQ của đường thẳng qua A và song song với đường thẳng BC

Bài 5) Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình đường thẳng \(\Delta\) song song với đường thẳng d: 3x-4y+1=0 và cách d một khoảng bằng 1

Bài 6) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình cạnh BC: x-2y+5=0, phương trình đường trung tuyến BB': y-2=0 và phương trình đường trung tuyến CC': 2x-y-2=0. Tìm tọa độ các đỉnh của tam giác.

Bài 7) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thằng d1: x-y-4=0 , d2: 2x=y-2=0 và 2 điểm A(7;5) B(2;3). Tìm điểm C trên đường thẳng d1 và điểm D trên đường thằng d2 sao cho tứ giác ABCD là hình bình hành.

Bài 8) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm A của cạnh CD thuộc đường thằng d: x+y-5=0. Viết phương trình đường thẳng AB.

CHỦ ĐỀ ĐƯỜNG TRÒN:

Bài 9) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thằng d: 2x-y-5=0 và hai điểm A(1;2) B(4;1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A,B

Bài 10) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: x+3y+8=0, d2: 3x-y+10=0 và điểm A(-2;1). Viết phương trình đường tròn (C) có tâm thuộc d1 đi qua điểm A và tiếp xúc với d2

Bài 11) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-1;1) B(3;3) và đường thẳng d: 3x-y+8=0. Viết phương trình đường tròn (C) đi qua hai điểm A,B và tiếp xúc với d

Bài 12) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d: x+2y-3=0 và \(\Delta\): x+3y-5=0. Viết phương trình đường tròn (C) có bán kính bằng \(\frac{2\sqrt{10}}{5}\), có tâm thuộc d và tiếp xúc với \(\Delta\)

Bài 13) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): \(\left(x-1\right)^2+\left(y-2\right)^2=8\)

a) Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(3;-4)

b) Viết phương trình tiếp tuyến của đường tròn (C) đi qua điểm B(5;-2)

c) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến vuông góc với đường thẳng d: x+y+2014=0

d) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến tạo với trục tung một góc 45 độ

CHỦ ĐỀ ELIP

Bài 14) Xác định các đỉnh, độ dài các trục, tiêu cự, tiêu điểm, tâm sai của elip có phương trình sau:

a) \(\frac{x^2}{2}+\frac{y^2}{2}=1\)

b) \(4x^2+25y^2=100\)

Bài 15) Lập phương trình chính tắc của Elip, biết

a) Elip đi qua điểm M\(\left(2;\frac{5}{3}\right)\) và có một tiêu điểm F1(-2;0)

b) Elip nhận F2(5;0) là một tiêu điểm và có độ dài trục nhỏ bằng \(4\sqrt{6}\)

c) Elip có độ dài trục lớn bằng \(2\sqrt{5}\) và tiêu cự bằng 2.

d) Elip đi qua hai điểm M(2;\(-\sqrt{2}\)) và N\(\left(-\sqrt{6};1\right)\)

Bài 16) Lập phương trình chính tắc của Elip, biết:

a) Elip có tổng độ dài hai trục bằng 8 và tâm sai \(e=\frac{1}{\sqrt{2}}\)

b) Elip có tâm sai \(e=\frac{\sqrt{5}}{3}\) và hình chữ nhật cơ sở có chu vi bằng 20.

c) Elip có tiêu điểm F1(-2;0) và hình chữ nhật cơ sở có diện tích bằng \(12\sqrt{5}\)

1
30 tháng 4 2019

Mọi người help mình với. Sắp thi học kì rồi

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

8 tháng 5 2019

Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)

Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)

Vậy đường thẳng Δ có dạng: x+y-3=0

Vì đường tròn có tâm I thuộc d nên I(a;-a)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì đường tròn đi qua A, B nên I A 2  = I B 2  ⇒ (3 - a ) 2  + a 2  = a 2  + (2 + a ) 2  ⇔ (3 - a ) 2  = (2 + a ) 2

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình đường tròn có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Ta có: 

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Giả sử elip (E) có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì (E) đi qua B nên:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình chính tắc của elip (E) là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

31 tháng 5 2017

a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).

Phương trình chính tăc của (E) có dạng

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)

\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)

\({a^2} = {b^2} + {c^2} = {b^2} + 3\)

Thay vào (1) ta được :

\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)

\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)

Suy ra \({a^2} = 4\)

Ta có a = 2 ; b = 1.

Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)

(0 ; -1) và (0 ; 1).

b) Phương trình chính tắc của (E) là :

\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).

Phương trình tung độ giao điểm của \(\Delta\)\((E)\) là :

\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)

Suy ra tọa độ của C và D là :

\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\)\(\left( {\sqrt 3 ;{1 \over 2}} \right)\)

Vậy CD = 1.