Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(=>\left(\frac{1}{2}+4\right)\cdot2^n=\frac{9}{2}\cdot2^6\)
\(=>\frac{9}{2}\cdot2^n=\frac{9}{2}\cdot2^6\)
\(=>2^n=2^6\)
\(=>n=6\)
a) \(\frac{1}{9}.27^n=3^n\)
\(\Leftrightarrow3^{-2}.3^{3n}=3^n\)
\(\Leftrightarrow3^{3n-2}=3^n\)
\(\Leftrightarrow3n-2=n\)
\(\Leftrightarrow2n=2\)
\(\Leftrightarrow n=1\)
b)\(3^{-2}.3^4.3^n=3^7\)
\(\Leftrightarrow3^{2+n}=3^7\)
\(\Leftrightarrow2+n=7\)
\(\Leftrightarrow n=5\)
\(\frac{1}{9}\cdot3^4\cdot3^n=3^8\)
\(=>3^n=3^8:3^4:\frac{1}{9}\)
\(=>3^n=3^8:3^4\cdot9\)
\(=>3^n=3^8:3^4\cdot3^2\)
\(=>3^n=3^6\)
\(=>n=6\)
b) \(\frac{1}{9}.3^4.3^n=3^8\)
\(\Rightarrow\left(\frac{1}{3}\right)^2.3^4.3^n=3^8\)
\(\Rightarrow\frac{1}{3^2}.3^4.3^n=3^8\)
\(\Rightarrow3^2.3^n=3^8\)
\(\Rightarrow3^n=3^8:3^2\)
\(\Rightarrow3^n=3^6\)
\(\Rightarrow n=6\)
Vậy n = 6
Bạn tham khảo tại đây nhé: Câu hỏi của Khánh Huyền⁀ᶦᵈᵒᶫ .
Chúc bạn học tốt!
\(\frac{1}{32^n}\cdot256^n=2048:2^2\)
\(=>\frac{1}{\left(2^5\right)^n}\cdot\left(2^8\right)^n=2^{10}:2^2\)
\(=>\frac{1}{2^{5n}}\cdot2^{8n}=2^8\)
\(=>2^{3n}=2^8\)
\(=>3n=8\)
\(=>n=\frac{8}{3}\)
a, \(\frac{1}{9}.27^n=3^n\Leftrightarrow\frac{1}{9}.3^{3.n}=3^n\Leftrightarrow\frac{1}{3^2}=3^n:3^{3n}\Leftrightarrow\frac{1}{3^2}=3^{n-3n}=3^{2n}\)
=> 3^2n . 3^2 = 1 => 3^( 2n + 2) = 3^0 => 2n + 2 = 0 => 2n = - 2 => n = - 1
b, 3^-2.3^4 .3^n = 3^ 7 => 3^ ( -2 + 4 + n) = 3^7 => 3^ (n+ 2) = 3^7 => n + 2 = 7 => n = 5
Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥
a: \(\Leftrightarrow3^n:27^n=\dfrac{1}{9}\)
\(\Leftrightarrow\left(\dfrac{1}{9}\right)^n=\dfrac{1}{9}\)
hay n=1
b: \(\Leftrightarrow3^n\cdot3^2=3^8\)
=>n+2=8
hay n=6
c: \(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot2^5\)
\(\Leftrightarrow2^n=2^6\)
hay n=6
d: \(\Leftrightarrow8^n=512\)
hay n=3