\(5^{-3}.25^n=5^{3n}\)

b, \(a^{\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
19 tháng 7 2021

a.\(5^{-3}.5^{2n}=5^{3n}\Leftrightarrow5^{-3+2n}=5^{3n}\Leftrightarrow-3+2n=3n\Leftrightarrow n=-3\)

b.\(a^{\left(2n+6\right)\left(3n-9\right)}=1=a^0\Leftrightarrow\left(2n+6\right)\left(3n-9\right)=0\Leftrightarrow\orbr{\begin{cases}2n+6=0\\3n-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}n=-3\\n=3\end{cases}}}\)

c.\(\left(\frac{2}{3}\right)^{3n}=\left(\frac{2}{3}\right)^{-12}\Leftrightarrow3n=-12\Leftrightarrow n=-4\)

d.\(\frac{1}{3}3^n=7.3^2.3^4-2.3^n\Leftrightarrow\frac{7}{3}3^n=7.3^6\Leftrightarrow3^n=3^7\Leftrightarrow n=7\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

14 tháng 9 2020

ko bt làm thì xuống lớp 6 hocj đi

Bạn 12345678901 xuống lớp 1 học đạo đức làm người nhé bạn. Lịch sự tí đi

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

30 tháng 9 2016

a)\(\left(\frac{1}{5}\right)^{3n-1}=\frac{1}{25}\)

\(\Leftrightarrow\left(\frac{1}{5}\right)^{3n-1}=\left(\frac{1}{5}\right)^2\)

\(\Leftrightarrow3n-1=2\)

\(\Leftrightarrow3n=3\)

\(\Leftrightarrow n=1\)

b)\(\left(\frac{4}{7}\right)^{n+2}=\frac{7}{4}\)

\(\Leftrightarrow\left(\frac{4}{7}\right)^{n+2}=\left(\frac{4}{7}\right)^{-1}\)

\(\Leftrightarrow n+2=-1\)

\(\Leftrightarrow n=-3\)

c)\(\left(\frac{2}{3}\right)^{-n+1}=\frac{3^3}{2^3}\)

\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{3}{2}\right)^3\)

\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{2}{3}\right)^{-3}\)

\(\Leftrightarrow-n+1=-3\)

\(\Leftrightarrow n=-4\)

c)\(\left(0,7\right)^{3n+1}=10^3:7^3\)

\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{10}{7}\right)^3\)

\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{7}{10}\right)^{-3}\)

\(\Leftrightarrow3n+1=-3\)

\(\Leftrightarrow3n=-4\)

\(\Leftrightarrow n=-\frac{4}{3}\)

a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}+\dfrac{5}{48}=\dfrac{6}{48}=\dfrac{1}{8}\)

\(\Leftrightarrow-\dfrac{1}{12}< x< \dfrac{1}{8}\)

=>x=0

c: \(\Leftrightarrow x=\dfrac{-1}{2}\cdot\dfrac{1}{4}=\dfrac{-1}{8}\)

d: \(\Leftrightarrow x^8=x^7\)

=>x(x-1)=0

=>x=0(loại) hoặc x=1(nhận)

e: \(\Leftrightarrow3^x=\dfrac{3^{10}}{3^9}=3\)

hay x=1

f: =>x-1=20

hay x=21

21 tháng 10 2019

a) Câu này thiếu đề nhé bạn.

b) \(\frac{25}{5^n}=5\)

\(\Rightarrow5^n=25:5\)

\(\Rightarrow5^n=5\)

\(\Rightarrow5^n=5^1\)

\(\Rightarrow n=1\)

Vậy \(n=1.\)

c) \(\frac{81}{\left(-3\right)^n}=-243\)

\(\Rightarrow\left(-3\right)^n=81:\left(-243\right)\)

\(\Rightarrow\left(-3\right)^n=-\frac{1}{3}\)

\(\Rightarrow\left(-3\right)^n=\left(-3\right)^{-1}\)

\(\Rightarrow n=-1\)

Vậy \(n=-1.\)

e) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)

\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

f) \(\left(-\frac{3}{4}\right)^n=\frac{81}{256}\)

\(\Rightarrow\left(-\frac{3}{4}\right)^n=\left(-\frac{3}{4}\right)^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

Chúc bạn học tốt!

22 tháng 10 2019

d) \(\frac{1}{2}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)

\(\Rightarrow2^n.\frac{9}{2}=288\)

\(\Rightarrow2^n=288:\frac{9}{2}\)

\(\Rightarrow2^n=64\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

Vậy \(n=6.\)

g) \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^n\)

\(\Rightarrow\left(-\frac{8}{7}\right)^n=\left(-\frac{8}{7}\right)^3\)

\(\Rightarrow n=3\)

Vậy \(n=3.\)

h) \(5^{-1}.25^n=125\)

\(\Rightarrow5^{-1}.5^{2n}=5^3\)

\(\Rightarrow5^{-1+2n}=5^3\)

\(\Rightarrow-1+2n=3\)

\(\Rightarrow2n=3+1\)

\(\Rightarrow2n=4\)

\(\Rightarrow n=4:2\)

\(\Rightarrow n=2\)

Vậy \(n=2.\)

k) \(3^{-1}.3^n+6.3^{n-1}=7.3^6\)

\(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)

\(\Rightarrow3^{n-1}.\left(1+6\right)=7.3^6\)

\(\Rightarrow3^{n-1}.7=7.3^6\)

\(\Rightarrow n-1=6\)

\(\Rightarrow n=6+1\)

\(\Rightarrow n=7\)

Vậy \(n=7.\)

Chúc bạn học tốt!

29 tháng 11 2016

a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)

\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)

\(\Rightarrow x+3=-3\)

\(\Rightarrow x=-6\)

b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)

\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)

\(\Rightarrow2x+2=-2\)

\(\Rightarrow2x=-4\)

\(\Rightarrow x=-2\)

c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)

\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)

\(\Rightarrow x+5=-4\)

\(\Rightarrow x=-9\)

29 tháng 11 2016

d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)

\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)

\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)

\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)

\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

4 tháng 9 2020

Bài 1:

Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)

\(\Leftrightarrow2x=\frac{1440}{144}=10\)

\(\Rightarrow x=5\)

Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)

=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)

16 tháng 11 2017

Bài đầu đơn giản rồi , tự tính nhé <3

Bài 2

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\)

Vậy.....