K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2024

a.

\(A=\dfrac{3\left(6n+1\right)}{7\left(3n+1\right)}\)

Gọi \(d=ƯC\left(3n+1;6n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\6n+1⋮d\end{matrix}\right.\)

\(\Rightarrow2\left(3n+1\right)-\left(6n+1\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow3n+1\) và \(6n+1\) nguyên tố cùng nhau

Đồng thời ta có \(3n+1\) luôn chia 3 dư 1 nên \(3n+1\) và 3 nguyên tố cùng nhau

\(\Rightarrow\) A rút gọn được khi và chỉ khi \(6n+1⋮7\)

\(\Rightarrow6n+1=7k\)

\(\Rightarrow6n-6=7k-7\)

\(\Rightarrow6\left(n-1\right)=7\left(k-1\right)\)

Do 6 và 7 nguyên tố cùng nhau \(\Rightarrow n-1⋮7\)

\(\Rightarrow n-1=7m\)

\(\Rightarrow n=7m+1\)

Vậy phân số đã cho rút gọn được khi n có dạng \(n=7m+1\) với \(m\in Z\)

16 tháng 2 2024

Cíu mình vớiii :((

26 tháng 11 2017

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

15 tháng 12 2016

làm câu

16 tháng 6 2016

bài này tương tự nè bạn khác có chút xíu à tim so tu nhien n de: n^3-n^2-7n+10 la mot so nguyen to? | Yahoo Hỏi & Đáp

a: Gọi d=UCLN(2n+1;5n+2)

\(\Leftrightarrow10n+5-10n-4⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(2n+1;5n+2)=1

hay 2n+1/5n+2 là phân số tối giản

b: Gọi d=UCLN(12n+1;30n+2)

\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(12n+1;30n+2)=1

=>12n+1/30n+2là phân số tối giản

c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)

\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)

\(\Leftrightarrow n+1⋮d\)

\(\Leftrightarrow2n+2⋮d\)

\(\Leftrightarrow2n+2-2n-1⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản

3 tháng 8 2016

Bài 3:

\(\frac{3n+1}{5n+2}\)

Ta có : (3n +1) * 5 =15n + 5

            (5n+2) *3 = 15n + 6

Mà :  15n + 6 - (15n + 5 ) =1 

       =>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)

25 tháng 12 2019

\(P=\frac{n^3+2n-1}{n^3+2n^2+2n+1}\)

\(=\frac{n^3+2n-1}{\left(n^3+1\right)+\left(2n^2+2n\right)}\)

\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}\)

\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2+n+1\right)}\)

Để phân thức xác định thì \(n+1\ne0\Rightarrow n\ne1\)

(vì \(n^2+n+1=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}>0\))