Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\left(m+1\right)^2+\left(m-1\right)^2\ge\left(2m+3\right)^2\)
\(\Leftrightarrow2m^2+12m+7\le0\)
\(\Leftrightarrow\frac{-6-\sqrt{22}}{2}\le m\le\frac{-6+\sqrt{22}}{2}\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m-1\right)^2+4m\ge m^4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^4-\left(m+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m^2+m+1\right)\left(m^2-m-1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le m\le\frac{1+\sqrt{5}}{2}\)
c/ \(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}=m\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)+\frac{1}{2}=m\)
Do \(-\frac{1}{2}\le sin\left(2x-\frac{\pi}{3}\right)\le\frac{3}{2}\Rightarrow-\frac{1}{2}\le m\le\frac{3}{2}\)
\(m^2\left(sinx-cosx\right)-m\left(sin^2x-cos^2x\right)=cosx-sinx\)
\(\Leftrightarrow m\left(sinx-cosx\right)\left(sinx+cosx\right)-m^2\left(sinx-cosx\right)-\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left[m\left(sinx+cosx\right)-m^2-1\right]=0\)
\(\Leftrightarrow sinx-cosx=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)
\(\Rightarrow x=\frac{\pi}{4}\)
a.
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(sinx+cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=-1\\2cosx-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\cosx=\frac{3}{2}\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow1+sinx+cosx+2sinx.cosx+2cos^2x-1=0\)
\(\Leftrightarrow sinx\left(2cosx+1\right)+cosx\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=x+\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
2.
Theo điều kiện có nghiệm của pt lượng giác bậc nhất với sin và cos:
\(m^2+\left(m-1\right)^2\ge5\)
\(\Leftrightarrow m^2-m-2\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)
a/
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{3}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\sqrt{\frac{3}{2}}>1\)
Pt vô nghiệm
b/
\(\Leftrightarrow\frac{2}{\sqrt{13}}sinx+\frac{3}{\sqrt{13}}cosx=\frac{2}{\sqrt{13}}\)
Đặt \(\frac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow sinx.cosa+cosx.sina=cosa\)
\(\Leftrightarrow sin\left(x+a\right)=sin\left(\frac{\pi}{2}-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+a=\frac{\pi}{2}-a+k2\pi\\x+a=\frac{\pi}{2}+a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2a+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
3.
Theo điều kiện của pt lượng giác bậc nhất:
\(m^2+\left(3m+1\right)^2\ge\left(1-2m\right)^2\)
\(\Leftrightarrow10m^2+6m+1\ge4m^2-4m+1\)
\(\Leftrightarrow3m^2+5m\ge0\Rightarrow\left[{}\begin{matrix}m\ge0\\m\le-\frac{5}{3}\end{matrix}\right.\)
4.
\(\Leftrightarrow1-sin^2x-\left(m^2-3\right)sinx+2m^2-3=0\)
\(\Leftrightarrow-sin^2x-m^2sinx+2m^2+3sinx-2=0\)
\(\Leftrightarrow\left(-sin^2x+3sinx-2\right)+m^2\left(2-sinx\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2-sinx\right)+m^2\left(2-sinx\right)=0\)
\(\Leftrightarrow\left(2-sinx\right)\left(sinx-1+m^2\right)=0\)
\(\Leftrightarrow sinx=1-m^2\)
\(\Rightarrow-1\le1-m^2\le1\)
\(\Rightarrow m^2\le2\Rightarrow-\sqrt{2}\le m\le\sqrt{2}\)
1.
Bạn xem lại đề, \(sin^2x\left(\frac{x}{2}-\frac{\pi}{4}\right)\) là sao nhỉ?Có cả x trong lẫn ngoài ngoặc?
2.
ĐKXĐ: \(sinx\ne0\)
\(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=1-cos^2x\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
1.
a, Phương trình có nghiệm khi:
\(\left(m+2\right)^2+m^2\ge4\)
\(\Leftrightarrow m^2+4m+4+m^2\ge4\)
\(\Leftrightarrow2m^2+4m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)
b, Phương trình có nghiệm khi:
\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)
\(\Leftrightarrow2m^2+6m\le0\)
\(\Leftrightarrow-3\le m\le0\)
2.
a, Phương trình vô nghiệm khi:
\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)
\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)
\(\Leftrightarrow4m^2-7< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)
b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)
\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)
Phương trình vô nghiệm khi:
\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)
\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)