Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vừa nhìn đề biết ngay sai
Sửa đề:
Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)
Giải:
Ta có:
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)
\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)
\(=5a-3b+2c=0\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\) vì \(P^2\left(-2\right)\ge0\)
Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)
b) Giải:
Từ giả thiết suy ra:
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có:
\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)
a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c
P(2) = a.\(2^2\)+b.2+c = 4a+2b+c
=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0
<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)
Nếu P(1) = P(2) => P(1).P(2) = 0
Nếu P(1) = -P(2) => P(1).P(2) < 0
Vậy P(1).P(2)\(\le\)0
b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)
\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)
Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=3y+4y\)
\(\Leftrightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
Dài ngoằng nhìn phát ngán
a)\(\left(x^4\right)^{^3}=\frac{x^{18}}{x^7}\Leftrightarrow x^{12}=x^{18-7}\Leftrightarrow x^{12}=x^{11}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
1. Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) \(\left(1\right)\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) \(\left(2\right)\)
Từ \(\left(1\right)\text{và (2)}\) \(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
2. \(\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|\ge0\\\left|\dfrac{2}{7}y+3\right|\ge0\end{matrix}\right.\Rightarrow\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|\ge0\)
\(\text{Mà }\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|=0\\\left|\dfrac{2}{7}y+3\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5-\dfrac{3}{4}x=0\\\dfrac{2}{7}y+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{4}x=5\\\dfrac{2}{7}x=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)
3. \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}\)
\(\text{Mà }a-b=15\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}=\dfrac{a-b}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=30\Rightarrow a=30.2=60\\\dfrac{b}{\dfrac{3}{2}}=30\Rightarrow b=30.\dfrac{3}{2}=45\\\dfrac{c}{\dfrac{4}{3}}=30\Rightarrow c=30.\dfrac{4}{3}=40\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}a=60\\b=45\\c=40\end{matrix}\right.\)
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
thanks bn rất nhiều !!!!!