Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìu dữ
a)3/2
b)-1/3
c)-5/6
d)0
e)-1/2
Bài 2
a=3
b=1/2
c=-1/3
d=0
e=9
f=-2/3
a) M=2018+|1-2x|
nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018
dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2
vậy giá trị nhỏ nhất của M=2018<=>x=1/2
b)N=2018-(1-2x)^2018
nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018
dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2
vậy giá trị lớn nhất của N=2018<=>x=1/2
c)P=7+|x-1|+|2-x|
áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có
P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8
dấu "=" xảy ra <=>(x-1). (2-x)=0
<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2
vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Bài 1a)
\(P\left(x\right)=x^{2018}+4x^2+10\)
VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)
\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)
Hay \(P\left(x\right)\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Bài 1b)
\(M\left(x\right)=x^2+x+1\)
\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
Bài 1 tôi làm 1 phần hướng dẫn thôi nhé các phần còn lại bạn nhìn theo mà làm . Nếu bí thì nhắn tin cho tôi để tôi làm nốt
a) \(|3x-1|-|2x+3|=0\left(1\right)\)
Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
\(2x+3=0\Leftrightarrow x=\frac{-3}{2}\)
Lập bảng xét dấu :
3x-1 2x+3 -3/2 1/3 0 0 - - - + + +
+) Với \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=-2x-3\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(1-3x\right)-\left(-2x-3\right)=0\)
\(1-3x+2x+3=0\)
\(-x+4=0\)
\(x=4\)( chọn )
+) Với \(\frac{-3}{2}\le x\le\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=2x+3\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(1-3x\right)-\left(2x+3\right)=0\)
\(1-3x-2x-3=0\)
\(-5x-2=0\)
\(x=\frac{-2}{5}\)( chọn )
+) Với \(x>\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1>0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|2x+3|=2x+3\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(3x-1\right)-\left(2x+3\right)=0\)
\(3x-1-2x-3=0\)
\(x-4=0\)
\(x=4\)( chọn )
Vậy \(x\in\left\{4;\frac{-2}{5}\right\}\)
Bài 2:
a) Ta có: \(|2x+1|\ge0\forall x\)
\(\Rightarrow|2x+1|-7\ge0-7\forall x\)
Hay \(A\ge-7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Min A=-7 \(\Leftrightarrow x=\frac{-1}{2}\)
b) ko biết
c) Ta có: \(|1-x|+|x-2|\ge|1-x+x-2|\)
Hay \(C\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right).\left(x-2\right)\ge0\)
( giải các th nếu ko giải đc thì nhắn tin riêng nhé :)) )
Bài này mài kiếm đâu ra z mk hềnh như bài này ta lm oy mk