K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

câu 5 :vì đồ thị của hàm số y =ax (a khác 0) là 1 đường thẵng đi qua góc toạ độ nên 3 điểm o,m,m là 1 đường thẳng ,k nha

8 tháng 3 2017

còn các câu 1;2;3;4 ai làm đc tớ sẽ*** 

18 tháng 8 2020

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

24 tháng 8 2021

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

Bài 1:Tìm giá trị của các biểu thức sau:a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)b| C=2|x-2| - 3|1-x| với x=4Bài 2:Rút gọn các biểu thức sau:a) |a|+a                       b) |a|-a               c)|a|.a                     d) |a|:a                      e)3(x-1)-2|x+3|Bài 3:a)Tìm x biết: |2x+3|=x+2b)Tìm giá trị nhỏ nhất của  A=|x-2006|+|2007-x|  khi x thay đổiBài 4:Tìm x...
Đọc tiếp

Bài 1:Tìm giá trị của các biểu thức sau:

a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)

b| C=2|x-2| - 3|1-x| với x=4

Bài 2:Rút gọn các biểu thức sau:

a) |a|+a                       b) |a|-a               c)|a|.a                     d) |a|:a                      e)3(x-1)-2|x+3|

Bài 3:

a)Tìm x biết: |2x+3|=x+2

b)Tìm giá trị nhỏ nhất của  A=|x-2006|+|2007-x|  khi x thay đổi

Bài 4:Tìm x biết:

a) \(\text{|}x-\frac{1}{3}\text{|}+\frac{4}{5}=\text{|}\left(-3,2\right)+\frac{2}{5}\text{|}\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 5: Cho

\(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\)

\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\)

a)Rút gọn A và B

b)Tìm x \(\in\)Z để A<x<B

Bài 6:Tìm giá trị nhỏ nhất của biểu thức

M= |x-2002|+|x-2001|

Bài 7:Tìm x và y biết:

a) 2|2x-3|=\(\frac{1}{2}\)

b) 7,5-3|5-2x|= -4,5

c) |3x-4|+|5y+5|=0

d) |x-7|+2x+5=6

Bài 8:Tìm giá trị nhỏ nhất của biểu thức

a) A=3,7+|4,3-x|

b) B= |3x+8,4|-24,2

c) C= |4x-3|+|5y+7,5|+17,5

Bài 9:Tìm giá trị lớn nhất của biểu thức

a) D=5,5-|2x-1,5|

b) E= -|10,2-3x|-14

c) F=4-|5x-2|-|3y+12|

1
19 tháng 3 2018

Bài 1 và 2 dễ rồi bạn tự làm được 

Bài 3 : 

\(a)\) Ta có : 

\(\left|2x+3\right|\ge0\)

Mà \(\left|2x+3\right|=x+2\)

\(\Rightarrow\)\(x+2\ge0\)

\(\Rightarrow\)\(x\ge-2\)

Trường hợp 1 : 

\(2x+3=x+2\)

\(\Leftrightarrow\)\(2x-x=2-3\)

\(\Leftrightarrow\)\(x=-1\) ( thoã mãn ) 

Trường hợp 2 : 

\(2x+3=-x-2\)

\(\Leftrightarrow\)\(2x+x=-2-3\)

\(\Leftrightarrow\)\(3x=-5\)

\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn ) 

Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)

Chúc bạn học tốt ~ 

8 tháng 3 2017

Ta có : x1 + x+ x3 + x+...... + x50 + x51 = 0

<=> (x1 + x2) + (x3 + x4) +...... + (x49 x50) + x51

<=> 1 + 1 + 1 + ..... + 1 + x51 = 0

=> 50 + x51 = 0

=> x51 = -50

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

10 tháng 12 2017

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=...=\frac{x_{2016}}{x_{2016} }=\frac{x_1+x_2+...+x_{2017}}{x_2+x_3+...+x_{2017}} \)( 2016 số)

\(=>\frac{x_1^{2016}}{x_2^{2016}}=\frac{x_2^{2016}}{ x_3^{2016}}=...=\frac{x_{2016}^{2016}}{x_{2017}^{2016}} =\frac{(x_1+x_2+...+x_{2016})^{2016}}{ (x_2+x_3+...+x_{2017})^{2016}}\)

\(\frac{x_1^{2016}}{x_2^{2016}}=\frac{x_1}{x_2}. \frac{x_2}{x_3}.\frac{x_3}{x_4}...\frac{x_{2016}}{x_{2017}} =\frac{x_1}{x_{2017}}\)

=>đpcm

4 tháng 10 2019

1.

Đề ở dòng thứ 2 chỗ gần cuối phải thêm là \(x_{49}+x_{50}=x_{50}+x_{51}=1\)thì mới tính được nhé.

Ta có: \(x_1+x_2+x_3+...+x_{49}+x_{50}+x_{51}=0\)

\(\Rightarrow\left(x_1+x_2\right)+\left(x_3+x_4\right)+...+\left(x_{49}+x_{50}\right)+x_{51}=0\)

Theo đề bài ta có:

\(1+1+1+...+1+x_{51}=0\)

\(\Rightarrow1.25+x_{51}=0\)

\(\Rightarrow25+x_{51}=0\)

\(\Rightarrow x_{51}=-25\)

\(x_{50}+x_{51}=0\)

\(\Rightarrow x_{50}+\left(-25\right)=1\)

\(\Rightarrow x_{50}=1+25\)

\(\Rightarrow x_{50}=26\)

Vậy \(x_{50}=26.\)

3.

Chúc bạn học tốt!

4 tháng 10 2019

2, Gọi số công nhan ba tổ lần lượt là a,b,c ( \(a,b,c\in N^+\))

Theo bài ra ta có: \(\left\{{}\begin{matrix}14a=15b=21c\\a-c=10\end{matrix}\right.\)

<=> \(\frac{a}{\frac{1}{14}}=\frac{b}{\frac{1}{15}}=\frac{c}{\frac{1}{21}}\) và a-c=10

(áp dụng tc dãy tỉ số bằng nhau giải bt)