K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .

\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)

\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)

25 tháng 7 2016

Bài 2 :

a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)

b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)

 

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

28 tháng 2 2020

\(ĐKXĐ:x\ne1\)

Ta có :

 \(x^2-2x+1=\left(x-1\right)^2>0\)(TH = 0 bị loại)

\(\Rightarrow\)Để \(A_{min}\Leftrightarrow3x^2-8x+6\)min

Có :\(3x^2-8x+6=\left(\sqrt{3}x+\frac{4\sqrt{3}}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

Dấu " = " xảy ra :

\(\Leftrightarrow\sqrt{3}x+\frac{4\sqrt{3}}{3}=0\)

\(\Leftrightarrow x=-\frac{4}{3}\)(tm)

Vậy \(A_{min}=\frac{\frac{2}{3}}{\left(-\frac{4}{3}-1\right)^2}=\frac{6}{49}\Leftrightarrow x=-\frac{4}{3}\)

15 tháng 10 2017

Gọi k là một giá trị của B ta có:
(3x² - 8x + 6)/(x² - 2x + 1) = k
<=> 3x² - 8x + 6 = k(x² - 2x + 1)
<=> (3 - k)x² - (8 - 2k)x + 6 - k = 0 (*)
Ta cần tìm k để PT (*) có nghiệm
Xét: ∆ = (8 - 2k)² - 4(3 - k)(6 - k) = 64 - 32k + 4k² - 4(18 - 9k + k²) = 4k - 8
Để PT (*) có nghiệm thì ∆ ≥ 0 <=> 4k - 8 ≥ 0 <=> k ≥ 2
Dấu "=" xảy ra khi -(8 - 2.2)x + 6 - 2 = 0 <=> -4x + 4 = 0 => x = 1
Vậy B ≥ 2 => GTNN của B = 2 khi x = 1

16 tháng 10 2017

khi x=2 chứ