K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)

A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2

15 tháng 8 2016
Dễ thấy hàm số chỉ có 1 điểm cực trị là gtnn nên giá trị lớn nhất là ở 1 trong 2 điểm bị chặn của hàm số thế vào ta được gtln là 30 với x=6 hoặc hoặc -5
14 tháng 8 2016

1/ B = (x+y)((x+y)- 3xy)+(x+y)- 2xy = 2 - 5xy = 2 - 5x(1-x)=5x- 5x + 2 = (x√5 - √5 /2)+3/4 >= 3/4 

Đạt GTNN là 3/4 khi x=y=1/2

2/ P = xy = x(6-x)=-x+6x = 9 - (x-3)2 <=9 

GTLN là 9 khi x=y=3

3 tháng 8 2018

C=x2-2x-5

=x2-5x+3x-15+10

=x(x-5)+3(x-5)+10

=(x+3)(x-5)+10<=10

DBXRK x=5

15 tháng 8 2016
1/ Gtnn của A là 0 khi x=1 2/ Đặt x^2 + x = a ta có a(a-4)=a^2 -4a >= (a-2)^2 - 4 >=-4 Đạt được khi x=1 hoặc x=-2
21 tháng 4 2016

. Mấy cái này dễ mà bạn

. 1) Ta có \(\left|2x+1\right|-3\left(x+5\right)=8\) (1)

. Nếu \(x\ge-\frac{1}{2}\) , pt (1) <=> \(2x+1-3x-15=8\) (Giải pt, ra kết quả của x, bạn đối chiếu với đk \(x\ge-\frac{1}{2}\) )

. Nếu \(x<-\frac{1}{2}\) , pt (1) <=> \(-2x-1-3x-15=8\) , bạn làm như trên

. Bài 2 tương tự bài 1

. 3) Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\) 

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\). Bạn nhóm hạng tử, sử dụng HĐT
. Được: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(BĐT đúng)

 . => đpcm

28 tháng 6 2019

Bài 1: \(C=3m^2-6m=3m^2-6m+3-3\)

\(=3\left(m^2-2m+1\right)-3\)

\(=3\left(m-1\right)^2-3\ge-3\forall m\)

Vậy: Min C = -3 tại m = 1

28 tháng 6 2019

Bài 2: \(a,\left(x+3\right)^2-\left(x-3\right)\left(x+3\right)=5\)

\(\Leftrightarrow x^2+6x+9-x^2+9=5\)

\(\Leftrightarrow6x=-13\)

\(\Leftrightarrow x=-\frac{13}{6}\)

30 tháng 6 2017

\(A=x^2-6x+11\)

\(=x^2-2x.3+3^2+2\)

\(=\left(x-3\right)^2+2\)

\(\Rightarrow A\ge2\)

\(\Rightarrow MinA=2\)

\(Khi\)\(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)

Chúc bn học giỏi nhoa!!!

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

7 tháng 8 2018

\(1;a,A=x^2+20x+101\)

\(A=x^2+2.10x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -10

Vậy Min A = 1 <=> x = -10