Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đkxđ: \(x\ge0\)
b) \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
c) Giả sử \(A\le1\Leftrightarrow\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\le1\Leftrightarrow\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le1\)
\(\Leftrightarrow\sqrt{x}-x+\sqrt{x}-1\le0\Leftrightarrow-x+2\sqrt{x}-1\le0\Leftrightarrow-\left(\sqrt{x}-1\right)^2\le0\) (luôn đúng)
Vậy A \< 1 luôn đúng (đpcm)
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
a: ĐKXĐ: \(\dfrac{1}{2-x}>=0\)
=>2-x>0
hay x<2
b: ĐKXĐ: \(\dfrac{3}{x^2-1}>=0\)
=>(x-1)(x+1)>0
=>x>1 hoặc x<-1
c: ĐKXĐ: \(x\in R\)
a/ đkxđ: \(\left\{{}\begin{matrix}x+1\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne0\end{matrix}\right.\)
b/ đkxđ: \(\dfrac{1}{1-x}>0\Leftrightarrow1-x>0\Leftrightarrow x< 1\)
( vì 1 - x ≠ 0 mà 1 > 0 nên mk cho cả bt > 0 nhé )
c/ đkxđ: \(\dfrac{1}{1-x^2}\ge0\) và 1 - x2 ≠ 0
mà 1 > 0
=> 1 - x2 > 0 \(\Leftrightarrow\left(1-x\right)\left(1+x\right)>0\)
\(\Leftrightarrow-1< x< 1\)
d/ đkxđ: \(\dfrac{2x-4}{1+x^2}\ge0\) mà 1 + x2 > 0 ∀x
=> 2x - 4 ≥ 0
<=> 2x ≥ 4
<=> x ≥ 2
vậy...............
a: ĐKXĐ: x>=0; x<>1
b: Khi x=9 thì \(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{x+2\sqrt{x}-3+4\sqrt{x}+4+5-x}{x-1}\)
\(=\dfrac{6\sqrt{x}+6}{\left(\sqrt{x}+1\right)^2}=\dfrac{6}{\sqrt{x}+1}\)
Câu a : ĐKXĐ : \(x\ge0\) và \(x\ne4\)
Câu b : \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-4-5-\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
Câu c :
\(A< 1\) \(\Leftrightarrow\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}< 1\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)< \left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow x-\sqrt{x}-6< x+\sqrt{x}-6\)
\(\Leftrightarrow-2\sqrt{x}< 0\) ( Luôn đúng với mọi x khi \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\))
Vậy các giá của x để A < 1 là \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
a: ĐKXĐ: x>=0
b: ĐKXĐ: x-1>0 và -(x2-x-6)>=0
=>x>1 và (x-3)(x+2)<=0
=>x>1 và -2<=x<=3
=>1<x<=3
\(a.\dfrac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\dfrac{1}{x-1}\right)=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\dfrac{x-2}{x-1}=\dfrac{\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|}{\left|x-2\right|}.\dfrac{x-2}{x-1}\left(x>1\right)\)
Tới đây dễ r , bạn tự chia TH ra làm nhé :D
\(b.\dfrac{1}{\sqrt{x}+\sqrt{x-1}}-\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{\sqrt{x^3}-x}{1-\sqrt{x}}=\dfrac{\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}+\dfrac{x\sqrt{x}-x}{\sqrt{x}-1}=-2\sqrt{x-1}+x\left(x\ge1\right)\)
Bạn ơi câu a có vẻ có vấn đề ý. Nếu bạn áp dụng HĐT thì phải là√(x-2)2 chứ nhỉ. Mong bạn giải đáp
Để A có nghĩa thì A≥0
⇒-3/3-x≥0
⇒3-x≤-1
⇒x≤4
ĐKXĐ:
a.
\(\dfrac{-3}{3-x}\ge0\Rightarrow3-x< 0\Rightarrow x>3\)
b.
\(x+\dfrac{1}{x}\ge0\Rightarrow\dfrac{x^2+1}{x}\ge0\Rightarrow x>0\)