K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}< x< \dfrac{1}{48}-\dfrac{1}{16}+\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{3}{12}< x< \dfrac{1}{48}-\dfrac{3}{48}+\dfrac{8}{48}\)

\(\Leftrightarrow\dfrac{-1}{12}< x< \dfrac{1}{8}\)

\(\Leftrightarrow-2< 24x< 3\)

=>x=0

b: \(\Leftrightarrow\dfrac{9-10}{12}< \dfrac{x}{12}< 1-\dfrac{8-3}{12}=\dfrac{7}{12}\)

=>-1<x<7

hay \(x\in\left\{0;1;2;3;4;5;6\right\}\)

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?

2 tháng 4 2017

Từ gt ta có:
\(\dfrac{13}{3}.\left(-\dfrac{1}{3}\right)\le x\le\dfrac{2}{3}.\left(-\dfrac{11}{12}\right)\)
\(\Leftrightarrow\dfrac{-13}{9}\le x\le-\dfrac{11}{18}\)
\(\Leftrightarrow\dfrac{-26}{18}\le x\le-\dfrac{11}{18}\)
Suy ra \(26\ge x\ge11\)
Vậy \(11\le x\le26\) ( x thuộc Z ) là các giá trị cần tìm

2 tháng 4 2017

\(4\dfrac{1}{3}.\left(\dfrac{1}{6}-\dfrac{1}{2}\right)\le x\le\dfrac{2}{3}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)

\(\dfrac{13}{3}.\dfrac{-1}{3}\le x\le\dfrac{2}{3}.\dfrac{-11}{12}\)

\(\dfrac{-13}{9}\)\(\le x\le\)\(\dfrac{-11}{18}\)

\(\dfrac{-26}{18}\)\(\le x\le\dfrac{-11}{18}\)

\(\Rightarrow x\in\left\{\dfrac{-12}{18};\dfrac{-13}{18};\dfrac{-14}{18};\dfrac{-15}{18};...;\dfrac{-24}{18};\dfrac{-25}{18}\right\}\)Tick hộ mình nha bạn

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

15 tháng 5 2017

Trả lời

undefined

15 tháng 5 2017

Trả lời:

undefined

a: \(\Leftrightarrow70+18< x< 120+126+70\)

=>88<x<316

hay \(x\in\left\{89;90;...;315\right\}\)

b: \(\Leftrightarrow-\dfrac{9}{3}< x< \dfrac{8}{5}+\dfrac{9}{5}=\dfrac{17}{5}\)

=>-3<x<3,4

hay \(x\in\left\{-2;-1;0;1;2;3\right\}\)

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

7 tháng 5 2017

lầy dạ??

https://i.imgur.com/7ARysDs.jpg

Tặng kèm nèèèèèèè!!!!!!!!!!!!

11 tháng 7 2017

giúp zới

khocroi