K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AM=BM(gt)

Do đó : tam giác AME=tam giác CME (c.g.c)

Suy ra MA =BC(2 cạnh tương ứng )(1)

góc MAE = góc CBE (2 góc tương ứng )

=> MA // BC(3)

+)Xét tam giác ADN và tam giác CDB có:

BD=DN(gt)

góc ADN = góc CDB(đđ)

AD=DC(gt)

Do đó : tam giác ADN = tam giác CDB (c.g.c)

Suy ra AN = BC(2 cạnh tương ứng )(2)

góc NAB = góc BCD (2 góc tương ứng )

=> AN//BC(4)

Từ (3) và(4) suy ra 3 điểm M , A , N thẳng hàng

=> MN=MA+NA

Từ (1) và(2) suy ra BC=MA=NA

=> BC =MA+NA2MA+NA2=MN2MN2

Hay MN = 2BC (ĐPCM)

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
6 tháng 8 2021

đm con mặt lồn

6 tháng 8 2021

im đi Lê Minh Phương

10 tháng 2 2016

mik rất cần, ai giúp mik 2 bài này với

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)