Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
(a - b) - (b + c) + (c - a) - (a - b - c)
= a - b - b - c + c - a - a + b + c
= (a - a) + (b - b) + (c - c) - (a + b - c)
=0 + 0 + 0 - (a + b - c)
= - (a + b - c) (đpcm)
2. chju
P = a . ( b - a ) - b . ( a - c ) - bc
P = ab - a2 - ba + bc - bc
P = ab - a2 - ba
P = a . ( b - a - b )
P = a . ( - a ) mà a khác 0 => P có giá trị âm
Vậy biểu thức P luôn âm với a khác 0
ta có thể tách abcabc = abc . 1000 + abc (bạn thử đi đúng đấy!!!) ( nhớ abcabc phải có gạch trên đầu nha)
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy tóm lại a = 7 ; b = 1 ; c = 4 ; d = 3
tích thử lại là 7 . 143 . 714 = 714714 ( chính xác )
Chúc học tốt môn toán!!!!!!!!!!!!!!!!
abcabc = abc . 1000 + abc
\(\Leftrightarrow\)abcabc = abc . (1000 + 1)
Suy ra : a. bcd . abc = abcabc
\(\Leftrightarrow\)a. bcd . abc = abc . 1001
\(\Leftrightarrow\)a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 (vì từ 1 đến 9 chỉ có 7 chia hết cho 1001) từ đó suy ra bcd = 143
Vậy : a = 7 ; b = 1 ; c = 4 ; d = 3
a . abc . bcd = abcabc
a . abc . bcd = abc . 1001
=> a . bcd = 1001
7 . 143 = 1001
=> a = 7 ; b = 1 ; c 4 ; d = 3
Bài 1 :
\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)
\(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
\(=\frac{13.\left(84+70+63+60\right)}{2520}\)
\(=\frac{13.277}{2520}\)
Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)
Vậy a chia hết cho 13
Bài 2 :
Ta có : \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)
Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)
Từ (1) ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau
Suy ra ;\(b'⋮b\left(2\right)\)
Tương tự ta cũng có \(b⋮b\left(3\right)\)
Từ (2 ) và (3 ) suy ra \(b=b'\)
Chúc bạn học tốt ( -_- )
Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu
a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b
b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)
Nhân vế với vế ta được :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)
Dấu "="xảy ra tại a=b
Bài 1.
Vì a, b, c, d \(\in\) N*, ta có:
\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)
\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)
\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)
\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)
Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.
Vậy M không có giá trị là số nguyên.
Ta có a . bcd . abc = abcabc
=> a . bcd . abc = 1001abc
=> a . bcd = 1001 ( chia cả 2 vế cho abc )
Suy ra a và bcd là các ước của 1001 . Ư(1001) = { 1 ; 7 ; 143 ;1001 }
Mà a là số tự nhiên có 1 chữ số nên a = 1 hoặc a = 7
+) Với a = 1 thì bcd = 1001 ( loại )
+) Với a = 7 thì bcd = 143 ( thoả mãn )
Vậy a = 7
b = 1
c = 4
d = 3
không thể