\(\dfrac{2}{x}\) -...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

\(x+y-xy+1=0\)

\(x+y-xy-1=-2\)

\(\Rightarrow x\left(1-y\right)-1\left(1-y\right)=-2\)

\(\Rightarrow\left(x-1\right)\left(1-y\right)=-2\)

\(\Rightarrow x-1;1-y\in U\left(-2\right)\)

\(U\left(-2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=1\Rightarrow x=2\\1-y=-2\Rightarrow y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-1\Rightarrow x=0\\1-y=2\Rightarrow y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=2\Rightarrow x=3\\1-y=-1\Rightarrow y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-2\Rightarrow x=-1\\1-y=1\Rightarrow y=0\end{matrix}\right.\end{matrix}\right.\)\

\(\dfrac{2}{x}-\dfrac{1}{9}=\dfrac{y}{3}\)

\(\Rightarrow\dfrac{2}{x}-\dfrac{1}{9}=\dfrac{3y}{9}\)

\(\Rightarrow\dfrac{2}{x}=\dfrac{3y}{9}+\dfrac{1}{9}\)

\(\Rightarrow\dfrac{2}{x}=\dfrac{3y+1}{9}\)

\(\Rightarrow x\left(3y+1\right)=18\)

\(\Rightarrow x;3y+1\in U\left(18\right)\)

Xét ước như bài trên

\(3x+3y-xy=0\)

\(\Rightarrow3x+3y-xy-9=-9\)

\(\Rightarrow x\left(3-y\right)-3\left(3-y\right)=-9\)

\(\Rightarrow\left(x-3\right)\left(3-y\right)=-9\)

\(\Rightarrow x-3;3-y\in U\left(9\right)\)

Xét ước ~~~

24 tháng 7 2016

a) x=4 ; y= 1

b) x=-8 ; y=1

24 tháng 7 2016

\(\frac{x}{4}-\frac{1}{2}=\frac{1}{y}\)

\(\Leftrightarrow\frac{x}{4}-\frac{2}{4}=\frac{1}{y}\)

\(\Leftrightarrow\frac{x-2}{4}=\frac{1}{y}\)

\(\Leftrightarrow\left(x-2\right).y=4.1\)

Vậy ta có bảng:

x-212-1-4
x341-2
y42-4-1

Vậy có 4 cặp số(x:y) tỏa mãn: (3;4);(4;2);(1;-4);(-2;-1)

17 tháng 4 2017

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\) (1)

Thay (1) vào:

C = \(\dfrac{5.3k^2+3.5k^2}{10.3k^2-3.5k^2}=\dfrac{k^2\left(15+15\right)}{k^2\left(30-15\right)}=\dfrac{30k^2}{5k^2}=6\)

Vậy \(C=6.\)

22 tháng 6 2017

a, \(\left[x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\right]x^2-1\)

\(=\left[x\left(x^2-16\right)-\left(x^2+1\right)\right]x^2-1\)

\(=\left[x^3-16x-x^2-1\right]x^2-1\)

\(=x^5-16x^3-x^4-x^2-1\)

b, \(\left(y-3\right)y+3y^2+9-y^2+2\left(y^2-2\right)\)

\(=y^2-3y+3y^2+9-y^2+2y^2-4\)

\(=5y^2-3y+5\)

c, \(\left(x+y\right)\left(x^2x^2-xy+y^2\right)\)

\(=x^5-x^2y+xy^2+x^4y-xy^2+y^3\)

d, \(\left(\dfrac{1}{2}xy+\dfrac{3}{4}y\right).\dfrac{1}{2}xy-\dfrac{3}{4}y\)

\(=\dfrac{1}{4}x^2y^2+\dfrac{3}{8}xy^2-\dfrac{3}{4}y\)

\(=\dfrac{1}{4}y.\left(x^2y+\dfrac{3}{2}xy-3\right)\)

Chúc bạn học tốt!!!

22 tháng 6 2017

ban dùng tính chất phân phối ko

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

19 tháng 8 2017

a) Ta có : \(x - 2xy + y - 3 = 0\)

\(\Rightarrow-2xy+x+y=3\)

\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)

\(\Rightarrow4xy-2x-2y=-6\)

\(\Rightarrow4xy-2x-2y+1=-6+1\)

\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)

\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)

Tự lập bảng đi -.-

26 tháng 3 2018

Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz

+ Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0

+ Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36

+ Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6

+ Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3

+ Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2

- Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2

- Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2

Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )