K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : 

Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)

Từ  \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay  \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)

Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)

Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)

Chúc bạn học tốt ( -_- )

Bài 2 : 

\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)

Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :

\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)

Chúc bạn học tốt ( -_- )

21 tháng 8 2019

Em vào thống kê hỏi đáp của chị mà xem bài 1

21 tháng 8 2019

thanks

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you

25 tháng 6 2018

1+2+3+6+12+...+1536

Bài 1 : 

Gọi số tự nhiên phải tìm là \(ab\)

\(\left(a,b\in N,1\le a\le9,0\le b\le9\right)\)

tỉ số giữa ab và a+b là k:

Ta có ; \(k=\frac{ab}{a+b}=\frac{10+b}{a+b}\le\frac{10a+10b}{a+b}\)\(=\frac{10.\left(a+b\right)}{a+b}=10\)

\(k=10\Leftrightarrow b=10b\Leftrightarrow b=0\)

Vậy k lớn nhất bằng 10 khi :

\(b=0,a\in\left(1,2,...,9\right)\)

Các số phải tìm là \(a0\) với a là chữ số khác 0

Chúc bạn học tốt ( -_- )

23 tháng 6 2017

mình không viết phân số được nên bạn thông cảm nha!

a) 1/2 + 2/3 + 3/4 + 4/5 < 44

=> 363/140 < 44

=> 363/140 < 6160/140

=> 363 < 6160

1/ Tìm phần nguyên x của hỗn số, biết rằng:a/ \(\frac{561}{143}< x\frac{12}{13}< \frac{1463}{247}\)                      b/ \(x\frac{3}{4}=\frac{21983}{7996}\)2/ Hãy tìm tất cả các phân số sao cho:a/ Có mẫu là 20, lớn hơn \(\frac{2}{13}\)và nhỏ hơn \(\frac{5}{13}\).b/ Có tử là 3, lớn hơn \(\frac{1}{8}\)và nhỏ hơn \(\frac{1}{7}\).c/ Lớn hơn \(\frac{5}{7}\)và nhỏ hơn \(\frac{5}{6}\).3/ Một phân số nhỏ hơn 1 tăng lên...
Đọc tiếp

1/ Tìm phần nguyên x của hỗn số, biết rằng:

a/ \(\frac{561}{143}< x\frac{12}{13}< \frac{1463}{247}\)                      b/ \(x\frac{3}{4}=\frac{21983}{7996}\)

2/ Hãy tìm tất cả các phân số sao cho:

a/ Có mẫu là 20, lớn hơn \(\frac{2}{13}\)và nhỏ hơn \(\frac{5}{13}\).

b/ Có tử là 3, lớn hơn \(\frac{1}{8}\)và nhỏ hơn \(\frac{1}{7}\).

c/ Lớn hơn \(\frac{5}{7}\)và nhỏ hơn \(\frac{5}{6}\).

3/ Một phân số nhỏ hơn 1 tăng lên hay giảm đi khi ta cộng cùng 1 số tự nhiên khác 0 vào tử và mẫu của phân số? Vì sao? (Xét trường hợp phân số lớn hơn 1).

4/ Tính tổng:

a/ \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

b/ \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

c/ \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

d/ \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

e/ \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

5/ Tìm x, biết:

a/ \(\left(\frac{11}{12}+\frac{11}{12.23}+\frac{11}{23.34}+...+\frac{11}{89.100}\right)+x=\frac{5}{3}\)

b/ \(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)

3
25 tháng 6 2017

Sao nhiều quá vại??

mk lm k nổi đâu

Dài quá nhìn lòi bảng họng lun ak

26 tháng 6 2017

Bài : 4 

a/ \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+....+\frac{1}{24\cdot25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b/ \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{99\cdot101}\)

\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{101-99}{99\cdot101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(=\frac{100}{101}\)

c/ \(\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}+\frac{5^2}{26\cdot31}\)

\(=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}+\frac{25}{26\cdot31}\)

\(=\frac{6-1}{1\cdot6}+\frac{11-6}{6\cdot11}+....+\frac{31-26}{26\cdot31}\)

\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{26}-\frac{1}{31}\right)\)

\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{31}\right)\)

\(=\frac{25}{5}\cdot\frac{30}{31}\)

\(=\frac{150}{31}\)

d/ \(\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+....+\frac{3}{49\cdot51}\)

\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+....+\frac{51-49}{49\cdot51}\)

\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{51}\right)\)

\(=\frac{3}{2}\cdot\frac{50}{51}\)

\(=\frac{25}{17}\)

e/ \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+\frac{1}{19\cdot25}+\frac{1}{25\cdot31}+\frac{1}{31\cdot37}\)

\(=\frac{7-1}{1\cdot7}+\frac{13-7}{7\cdot13}+....+\frac{37-31}{31\cdot37}\)

\(=\frac{1}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+....+\frac{1}{31}-\frac{1}{37}\right)\)

\(=\frac{1}{6}\cdot\left(1-\frac{1}{37}\right)\)

\(=\frac{1}{6}\cdot\frac{36}{37}\)

\(=\frac{6}{37}\)

BÀI 1: Trong các phân số sau, những phân số nào bằng nhau?\(\frac{15}{60},\frac{-7}{5},\frac{6}{15},\frac{28}{-20},\frac{3}{12}\)BÀI 2: Tìm X \(\in z\)biết:a,\(\frac{x-1}{9}=\frac{8}{3}\)                   b,\(\frac{-x}{4}=\frac{-9}{x}\)                   c,\(\frac{x}{4}=\frac{18}{x+1}\)                  d,\(\frac{x-4}{y-3}=\frac{4}{3}\)và x=5+ye, \(\frac{-84}{14}< 3x< \frac{108}{9}\)BÀI 3: Chứng tỏ rằng các phân số sau là phân số...
Đọc tiếp

BÀI 1: Trong các phân số sau, những phân số nào bằng nhau?

\(\frac{15}{60},\frac{-7}{5},\frac{6}{15},\frac{28}{-20},\frac{3}{12}\)

BÀI 2: Tìm X \(\in z\)biết:

a,\(\frac{x-1}{9}=\frac{8}{3}\)                   b,\(\frac{-x}{4}=\frac{-9}{x}\)                   c,\(\frac{x}{4}=\frac{18}{x+1}\)                  d,\(\frac{x-4}{y-3}=\frac{4}{3}\)và x=5+y

e, \(\frac{-84}{14}< 3x< \frac{108}{9}\)

BÀI 3: Chứng tỏ rằng các phân số sau là phân số tối giản:

Với n\(\in\)N*

a,\(\frac{4n+1}{6n+1}\)                                                                          b,\(\frac{3n-2}{4n-3}\)

BÀI 4: Tìm phân số bằng phân số \(\frac{200}{520}\)sao cho:

a, Tổng của tử và mẫu là 306.

b, Hiệu của tử và mẫu là 184.

c, Tích của tử và mẫu là 2340.

BÀI 5: Cho M=(0;7;14;21;28;35;42). Tìm a,b\(\in\)M sao cho 

a,\(\frac{a}{b}\)có giá chị lớn nhất.

b, \(\frac{a-b}{a+b}\)là phân số dương nhỏ nhất.

0