Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(=\left(x^2-3x+2\right)\left(x-3\right)\)
\(=x^3-3x^2-3x^2+9x+2x-6\)
\(=x^3-6x^2+11x-6\)
b: \(\left(x^2+x+1\right)\left(x^2-1\right)\left(x^2-x+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\cdot\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^6-1\)
c: \(=8x-6x^2-20+15x-\left(15x-6x^2+55-10x\right)-30x+75\)
\(=-6x^2-7x+55+6x^2-5x-55\)
\(=-12x\)
d: \(\left(x^2-2x+3\right)\left(3x-5\right)-\left(x^2+x-1\right)\left(2x+7\right)\)
\(=3x^3-5x^2-6x^2+10x+9x-10-\left(x^2+x-1\right)\left(2x+7\right)\)
\(=3x^3-11x^2+19x-10-\left(2x^3+7x^2+2x^2+7x-2x-7\right)\)
\(=3x^3-11x^2+19x-10-2x^3-9x^2-5x+7\)
\(=x^3-20x^2+14x-3\)
a) \(\left(x^2-1\right)\left(x^2+2x\right)=x^4+2x^3-x^2-2x\)
b) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)=6x^2-3x+4x-2\left(3-x\right)\)
\(=6x^2-3x+4x-6+2x\)
\(=6x^2+3x-6\)
c) \(\left(x+3\right)\left(x^2+3x-5\right)=x^3+3x^2+3x^2+9x-5x-15\)
\(=x^3+6x^2+4x-15\)
d) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+x^2-x^2-x+x+1\)
\(=x^3+1\)
e) \(\left(2x^3-3x-1\right)\left(5x+2\right)=10x^4-15x^2-5x+4x^3-6x-2\)
\(=10x^4+4x^3-15x^2-11x-2\)
f) \(\left(x^2-2x+3\right)\left(x-4\right)=x^3-2x^2+3x-4x^2+8x-12\)
\(=x^3-6x^2+11x-12\)
1.a) \(\Leftrightarrow\) 3x+10-2x =0
\(\Leftrightarrow\text{ 3x-2x=-10}\)
\(\Leftrightarrow x=-10\)
b) coi lại có thiếu ngoặc ko nhé
cứ nhân vào dấu ngoặc rồi làm như thường
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
a) = 8x-6x-20+15x-15-6x+55-22x-30x+75
b)3x3+5x2-6x2+10x+9x-15-2x3+7x2+2x2+7x-2x-7
bạn chỉ cần chép lại đầu bài rồi ghi kết quả này vào là xong nhá bởi vì đây là nhân đa thức với đa thức mà
e, 3x(2-x) =15(x-2)
\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy..
f, (x+5)(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
Vậy..
g, x(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
,h, (2x -4)(x-2)=0
\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
i, (x+1/5)(2x-3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)
k, x²-4x=0
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
m, 4x²-1=0
\(\Leftrightarrow\left(2x\right)^2-1^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)
n, x²-6x+9=0
\(\Leftrightarrow x^2-2.x.3+3^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)
<=> x=3
l, (3x-5)²-(x+4)²=0
\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)
\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy ..
o, 7x(x+2)-5(x+2)=0
\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)
Vậy....
p, 3x(2x-5)-4x+10=0
\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)
\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy...
q, (2-2x)-x²+1=0
\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)
\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy ....
r, x(1-3x)=5(1-3x)
\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)
s, 2x-3/4+x+1/6=3
\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)
Bài 1:
a) \(3x\left(5x^2-2x+1\right)\)
\(=15x^3-6x^2+3x\)
b) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^2\left(x^2-1\right)+2x\left(x^2-1\right)\)
\(=x^4-x^2+2x^3-2x\)
\(=x^4+2x^3-x^2-2x\)
Bài 2:
a) \(3x^2=2x\)
\(\Leftrightarrow3x^2-2x=0\)
\(\Leftrightarrow x\left(3x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
b)\(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-2x-1=12x-5\)
\(\Leftrightarrow14x=4\Leftrightarrow x=\frac{2}{7}\)
a, (x-1).(x-2).(x-3)
= (x2 - 2x - x + 2) . (x-3)
= (x2 - 3x + 2). (x-3)4
= x3 - 3x2 - 3x2 + 9x + 2x -6
= x3 - 6x2 + 11x -6
b) (x2 +x+1)(x2-1)(x2-x+1)
= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)
= (x4 + x3 -x -1) . (x2 - x +1)
= x6 - x5 + x4 + x5 - x4 + x3 - x2 + x -1
= x6 + x3 - x2 + x - 1
c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)
= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75
= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75
= 6x-6x2 +55
d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)
làm tương tự phần C
lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu