K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Đây là đề chọn HSG trường toán 6 mà mk vừa thi. Help me to get results.

9 tháng 4 2017

bạn cần hỏi bài nào

19 tháng 6 2017

Câu hỏi của nguyen khanh li - Toán lớp 6 - Học toán với OnlineMath

7 tháng 8 2017

lam sao de viet dc phan so do ban

bài hay đấy để mk thử giải

à bạn xem lại câu a hộ mk với

18 tháng 3 2018

\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)

23 tháng 3 2017

1,

đặt A= \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\)

2A=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\)

2A-A=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\))

A=1-\(\dfrac{1}{2017}\)

A=\(\dfrac{2016}{2017}\)

vậy A=\(\dfrac{2016}{2017}\)

23 tháng 3 2017

Bạn ơi hnhf như đề bài phải là tính \(^{\dfrac{a}{b}}\)chứ k thì làm sao mak tính đc phần b

1 tháng 8 2017

c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)

E = \(\dfrac{4116-14}{10290-35}\)

E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)

E = \(\dfrac{14}{35}\)

K = \(\dfrac{2929-101}{2.1919+404}\)

K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)

K = \(\dfrac{29-1}{34+8}\)

K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)

Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)

\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)

\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)

Vậy E < K

Các câu còn lại tương tự

9 tháng 7 2017

Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)

\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)

Nên:

\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)

Vậy A = 1

Chúc bạn học tốt!!

10 tháng 7 2017

siêu ghê :))

16 tháng 11 2018

1/

a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)

\(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)

\(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)

16 tháng 11 2018

b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993

2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993

2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993

2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993

2.(1 − 1/x+1) = 3984/1993

1 − 1/x + 1= 3984/1993 :2

1 − 1/x+1 = 1992/1993

1/x+1 = 1 − 1992/1993

1/x+1=1/1993

<=>x+1 = 1993

<=>x+1=1993

<=> x+1=1993

<=> x = 1993-1

<=> x = 1992