Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
\(1,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2x+6}-\frac{x-6}{x\left(2x-6\right)}=\frac{3x-x+6}{x\left(2x-6\right)}=\frac{2x+6}{x\left(2x-6\right)}\)
\(2,\frac{1}{1-x}+\frac{2x}{x^2-1}=\frac{-1\left(x+1\right)+2x}{x^2-1}=\frac{x-1}{x^2-1}=\frac{1}{x+1}\)
\(3,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
\(4,\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)
\(5,\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2x\left(x+4\right)}\)
\(6,\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{9y}{2x^2}\)
1) \(\frac{8xy\left(3x-1\right)^3}{12x^3\left(1-3x\right)}=-\frac{8xy\left(3x-1\right)^3}{12x^3\left(3x-1\right)}=-\frac{2y\left(3x-1\right)^2}{3x^2}\)
2) \(\frac{5x^3+5x}{x^4-1}=\frac{5x\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-1\right)}=\frac{5x}{x^2-1}\)
3) \(\frac{9-\left(x+5\right)^2}{x^2+4x+4}=\frac{\left(3-x-5\right)\left(3+x+5\right)}{\left(x+2\right)^2}=\frac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}=-\frac{x+8}{x+2}\)
3) \(\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(16-4x+x^2\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x}{x+4}\)
b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)
Suy ra:
\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)
\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15
\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2
\(\Leftrightarrow\)4x2-14x = -12
\(\Leftrightarrow4x^2-14x+12=0\)
\(\Leftrightarrow4x^2-8x-6x+12=0\)
\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0
\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)
Bài làm
a) \(\frac{4x-5}{8xy}+\frac{5-y}{8xy}=\frac{4x-5+5-y}{8xy}=\frac{4x-y}{8xy}\)
b) \(\frac{4x^2}{x-2}+\frac{3}{x-2}+\frac{19}{2-x}=\frac{4x^2}{x-2}+\frac{3}{x-2}-\frac{19}{x-2}=\frac{4x^2+3-19}{x-2}=\frac{4x^2-16}{x-2}=\frac{2\left(x-2\right)\left(2x+4\right)}{x-2}=2\left(2x+4\right)\)
c) \(\frac{2x^3+5}{x^2-x+1}-\frac{x^3+4}{x^2-x+1}=\frac{2x^3+5-x^3-4}{x^2-x+1}=\frac{2x^2-x^3+1}{x^2-x+1}\)
d) \(\frac{6}{5x-20}-\frac{x-5}{x^2-8x+16}=\frac{6}{5\left(x-4\right)}-\frac{x-5}{\left(x-4\right)^2}=\frac{6\left(x-4\right)}{5\left(x-4\right)^2}-\frac{\left(x-5\right)5}{5\left(x-4\right)^2}=\frac{6x-4-5x+25}{5\left(x-4\right)^2}=\frac{x+21}{5\left(x-4\right)^2}\)
# Học tốt #