Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2\(^1\)=2
4\(^2\)= 16
8 = 8
10\(^3\)= 1000
3 = 3
5\(^2\)= 25
7\(^2\)= 49
9\(^2\)= 81
xin thank
học tốt
bài 1 :\(\frac{3}{8}-\frac{1}{5}+\frac{3}{40}=\frac{1}{4}\)
\(\frac{9}{7}\cdot\left(\frac{3}{7}-\frac{1}{2}\right)=-\frac{9}{98}\)
\(-\frac{3}{7}\cdot\frac{5}{9}+\frac{4}{9}\cdot-\frac{3}{7}\cdot\frac{3}{7}=\left(\frac{4}{9}+\frac{5}{9}-1\right)\cdot-\frac{3}{7}=-1\cdot-\frac{3}{7}=\frac{3}{7}\)
bài 2: \(x+\frac{2}{5}=\frac{9}{10}\)
\(x=\frac{9}{10}-\frac{2}{5}\)
\(x=\frac{1}{2}\)
x = \(\frac{9}{10}\)- \(\frac{2}{5}\)
x =\(\frac{9}{10}\) - \(\frac{4}{10}\)
x = \(\frac{5}{10}\) = \(\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
ai thấy tớ đúng thì ủng hộ nha
tui đang âm
1) gọi hai số chẵn liên tiếp là 2n và 2n+2 ( với n là số tự nhiên)
=> tích của hai số tự nhiên liên tiếp:
2n(2n+2)=2n[2(n+1)]=4n(n+1)
ta thấy: 2n(2n+1)\(⋮\)2 ; 4n(n+1)\(⋮\)4
=> 2n(2n+2)\(⋮\)8
vậy tích của hai số chẵn liên tiếp thì chia hết cho 8
\(a)\dfrac{3}{4}-\dfrac{-5}{2}-\dfrac{7}{-24}\)
\(=\dfrac{13}{4}-\dfrac{7}{-24}\)
\(=\dfrac{85}{24}\)
\(b)\dfrac{4}{7}+\dfrac{-5}{8}-\dfrac{3}{28}\)
\(=\dfrac{-3}{56}-\dfrac{3}{28}\)
\(=\dfrac{-9}{56}\)
\(c)\dfrac{7}{36}-\dfrac{8}{-9}+\dfrac{-2}{3}\)
\(=\dfrac{13}{12}\)\(+\dfrac{-2}{3}\)
\(=\dfrac{5}{12}\)
\(d)\dfrac{-1}{2}+\dfrac{3}{7}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-1}{14}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-23}{126}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-4}{7}+\dfrac{4}{7}\)
\(=0\)
\(e)\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{-5}{56}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{83}{56}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{305}{168}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{47}{24}+\dfrac{5}{-8}\)
\(=\dfrac{4}{3}\)
Bài 2 : Tính
a) \(\dfrac{3}{4}-\dfrac{-5}{2}-\dfrac{7}{-24}\)
\(=\dfrac{18}{24}-\dfrac{-60}{24}-\dfrac{-4}{24}\)
\(=\dfrac{18-\left(-60\right)-\left(-7\right)}{24}\)
\(=\dfrac{85}{24}\)
b) \(\dfrac{4}{7}+\dfrac{-5}{8}-\dfrac{3}{28}\)
\(=\dfrac{32}{56}+\dfrac{-35}{56}-\dfrac{6}{56}\)
\(=\dfrac{32+\left(-35\right)-6}{56}\)
\(=\dfrac{-9}{56}\)
c) \(\dfrac{7}{36}-\dfrac{8}{9}+\dfrac{-2}{3}\)
\(=\dfrac{7}{36}-\dfrac{32}{36}+\dfrac{-24}{36}\)
\(=\dfrac{7-32+\left(-24\right)}{36}\)
\(=\dfrac{-49}{36}\)
d) \(\dfrac{-1}{2}+\dfrac{3}{7}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-9}{18}+\dfrac{3}{7}-\dfrac{2}{18}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\left(\dfrac{-9}{18}+\dfrac{-7}{18}-\dfrac{2}{18}\right)+\left(\dfrac{3}{7}+\dfrac{4}{7}\right)\)
\(=\left(-1\right)+1\)
\(=0\)
e) \(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{11}{7}\right)+\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\dfrac{1}{3}\)
\(=2+\left(-1\right)+\dfrac{1}{3}\)
\(=1+\dfrac{1}{3}\)
\(=\dfrac{4}{3}\)
CÁCH 1 : A = \(\dfrac{235}{11}-\left(\dfrac{8}{5}+\dfrac{81}{11}\right)\)
A = \(\dfrac{235}{11}-\left(\dfrac{88}{55}+\dfrac{405}{55}\right)\)
A = \(\dfrac{235}{11}-\dfrac{493}{55}\)
A = \(\dfrac{1175}{55}+\dfrac{493}{55}\)
A = \(\dfrac{1668}{55}\)
Bài làm
a) \(-\frac{3}{7}+\frac{3}{4}:\frac{3}{14}\)
= \(-\frac{3}{7}+\frac{3}{4}.\frac{14}{3}\)
= \(-\frac{3}{7}+\frac{7}{2}\)
\(=-\frac{7}{14}+\frac{49}{14}\)
\(=\frac{42}{14}=3\)
b) \(5-\frac{7}{39}:\frac{7}{13}+\frac{8}{9}:4\)
\(=5=\frac{7}{39}.\frac{13}{7}+\frac{8}{9}.\frac{1}{4}\)
\(=5-\frac{1}{3}+\frac{2}{9}\)
\(=\frac{45}{9}-\frac{3}{9}+\frac{2}{9}\)
\(=\frac{44}{9}\)
c) \(\left(\frac{5}{12}:\frac{11}{6}+\frac{5}{12}:\frac{11}{5}\right)-\frac{-7}{12}\)
\(=\left(\frac{5}{12}.\frac{6}{11}+\frac{5}{12}.\frac{5}{11}\right)+\frac{7}{12}\)
\(=\left[\frac{5}{12}\left(\frac{6}{11}+\frac{5}{11}\right)\right]+\frac{7}{12}\)
\(=\frac{5}{12}+\frac{7}{12}\)
\(=\frac{12}{12}=1\)
d) \(-\frac{5}{9}+\frac{14}{9}\left(\frac{3}{4}-\frac{2}{5}\right):49\)
\(=-\frac{5}{9}+\frac{14}{9}\left(\frac{15}{20}-\frac{8}{20}\right):49\)
\(=-\frac{5}{9}+\frac{14}{9}.\frac{7}{20}.\frac{1}{49}\)
\(=-\frac{5}{9}+\frac{7}{9}.\frac{7}{10}.\frac{1}{7.7}\)
\(=-\frac{5}{9}+\frac{1}{90}\)
\(=-\frac{50}{90}+\frac{1}{90}=-\frac{49}{90}\)
a) \(\left(-0,75+\frac{1}{2}\right):\frac{4}{3}\)
\(=\frac{-1}{4}:\frac{4}{3}\)
\(=\frac{-3}{16}\)
b) \(\frac{5}{9}.\frac{2}{7}+\frac{5}{9}.\frac{5}{7}-\frac{8}{3}\)
\(=\frac{5}{9}.\left(\frac{2}{7}+\frac{5}{7}\right)-\frac{8}{3}\)
\(=\frac{5}{9}.1-\frac{8}{3}\)
\(=\frac{-19}{9}\)
c) \(7,5.1\frac{3}{4}-6\frac{2}{5}\)
\(=\frac{15}{2}.\frac{7}{4}-\frac{32}{5}\)
\(=\frac{269}{40}\)
bài 1:a,
\(3^9.3:3^{10}+\left|2010^0\right|\)
=> \(3^9.3:3^{10}+\left|1\right|\)
=> \(3^9.3:3^{10}+1\)
=> \(3^{10}:3^{10}+1\)
=> 1+1
=> 2
b, \([\left(4^9:4^7\right):8-735^0]^{2011}\)
=> \([4^2:8-735^0]^{2011}\)
=> \([2^4:2^3-735^0]^{2011}\)
=> \([2-1]^{2011}\)
=> 1
c, \(8^{2x}:8=512\)
=> \(8^{2x}:8=8^3\)
=> \(8^{2x}=8^4\)
=> 2x=4
=> x=2
bài 2:
Theo đề ta có:
\(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)
=> \((7^0+7^1)+(7^2+7^3)+......+(7^{2010}+7^{2011})\)
=> \(7^0.\left(1+7\right)+7^2\left(1+7\right)+..+7^{2010}\left(1+7\right)\)
=> \(7^0.8+7^2.8+..+7^{2010}.8\)
Mà \(7^0.8+7^2.8+..+7^{2010}.8\) \(⋮\) 8 ( vì có thừa số 8 nên chia hết cho 8)
nên \(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)\(⋮\) 8