Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
Bài làm :
a) \(\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2=a^2+2ab+b^2\)
b) \(\left(a-b\right)^2=a^2-2ab+b^2\)
c) \(\left(a+b\right)\left(a-b\right)=a^2-b^2\)
d) \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
e) \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
f) \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
g) \(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3-b^3\)
Bài 3:
a: \(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)
b: \(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)
Bài 2:
\(A+B=4x^4-5xy+5y^2+3x^2+2xy-y=4x^4+3x^2-3xy+5y^2-y\)
\(A-B=4x^4-5xy+5y^2-3x^2-2xy+y=4x^4-3x^2+5y^2-7xy+y\)
\(B-A=-\left(A-B\right)=-4x^4+3x^2-5y^2+7xy-y\)
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
Bài 1:
a: cho -6x+5=0
⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)
vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)
b: cho x2-2x=0 ⇔ x(x-2)
⇒ x=0 / x-2=0 ⇒ x=0/2
Vậy nghiệm của đa thức là :0 hoặc 2
d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)
⇒\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức là 1 hoặc 3
f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0
⇒\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)
Xin lỗi mình không có thời gian làm hết
... câu cuối bn lm dài dòng quá r ạ -)) cái dòng sra là bỏ luôn dấu GTTĐ của VT r ạ :))
a) Cho \(3x^2-4x=0\)
\(\Rightarrow3.x.x-4x=0\)
\(\Rightarrow x.\left(3x-4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\3x-4=0\end{matrix}\right.\)
Có \(3x - 4 =0\)
\(\Rightarrow3x=4\)
\(\Rightarrow x=\dfrac{4}{3}\)
Vậy x= 0 hoặc x =\(\dfrac{4}{3}\)là nghiệm của đa thức \(3x^2-4x\)
b) Cho \(x+3x^2=0\)
\(\Rightarrow x+3.x.x=0\)
\(\Rightarrow x.\left(3x+1\right)=0\)
Suy ra x =0
hoặc \(3x+1=0\)
\(\Rightarrow\)3x=-1
x=\(\dfrac{-1}{3}\)
Vậy ...
Bài 3: Tìm nghiệm các đa thức sau:
a. 3x2 - 4x
Gọi P(x) là đa thức 3x2 - 4x.
Cho P(x) = 0
=> 3x2 - 4x = 0
=> x (3x - 4)= 0
Suy ra:
TH1: x = 0
TH2: 3x - 4 = 0
_____3x___= 0 + 4
_____3x___= 4
______x___= \(\dfrac{4}{3}\)
Vậy x = \(\dfrac{4}{3}\) là nghiệm của đa thức 3x2 - 4x.
b. x + 3x2
Gọi Q(x) là đa thức x+3x2
Cho Q(x) = 0
=> x+3x2 = 0
=> x ( 3x) = 0
Suy ra:
TH1: x = 0
TH2: 3x = 0
=> x = 0.
Vậy x = 0 là nghiệm của đa thức x + 3x2 .
Chúc bn hx tốt!