Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
a: 17/200>17/314
b: 11/54=22/108<22/37
c: 141/893=3/19
159/901=3/17
mà 3/19<3/17
nên 141/893<159/901
Ta có: \(\dfrac{1}{11}>\dfrac{1}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
\(\dfrac{1}{13}>\dfrac{1}{20}\)
\(\dfrac{1}{14}>\dfrac{1}{20}\)
\(\dfrac{1}{15}>\dfrac{1}{20}\)
\(\dfrac{1}{16}>\dfrac{1}{20}\)
\(\dfrac{1}{17}>\dfrac{1}{20}\)
\(\dfrac{1}{18}>\dfrac{1}{20}\)
\(\dfrac{1}{19}>\dfrac{1}{20}\)
\(\dfrac{1}{20}=\dfrac{1}{20}\)
=> \(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}>\dfrac{1}{20}.10\)
hay S > \(\dfrac{1}{2}\)
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\) ( vì 1 > 0 , 0 < 11 < 20 )
\(\dfrac{1}{12}>\dfrac{1}{20}\) ( vì 1 > 0 , 0 < 12 < 20 )
...
\(\dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\)( 10 số hạng )
\(\Rightarrow S>\dfrac{1}{20}.10\Rightarrow S>\dfrac{10}{20}\Rightarrow S>\dfrac{1}{2}\)
Vậy ...
a) \(\dfrac{-1}{-4}\)=\(\dfrac{1}{4}>0\)
\(\dfrac{3}{-4}< 0\)
\(\Rightarrow\dfrac{1}{4}>\dfrac{3}{-4}hay\dfrac{-1}{-4}>\dfrac{3}{-4}\)
b) Ta có:
\(\dfrac{15}{17}=1-\dfrac{2}{17}\\ \)
\(\dfrac{25}{27}=1-\dfrac{2}{27}\\ \\ \)
Mà \(\dfrac{2}{17}>\dfrac{2}{27}\left(17< 27\right)\)
\(\Rightarrow1-\dfrac{2}{17}< 1-\dfrac{2}{27}\)hay \(\dfrac{15}{17}< \dfrac{25}{27}\)
a: 14/21=2/3=4/6
60/72=5/6
mà 4<5
nên 14/21<60/72
b: 38/133=2/7=16/56
129/344=3/8=21/56
mà 16<21
nên 38/133<129/344
ta thấy : \(\dfrac{1}{11},\dfrac{1}{12},\dfrac{1}{13},...\dfrac{1}{19}\)đều lớn hơn\(\dfrac{1}{20}\)
=>\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\)(20 số hạng \(\dfrac{1}{20}\))
=>\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+..+\dfrac{1}{20}>1\) mà 1 > \(\dfrac{1}{2}\) =>\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+..+\dfrac{1}{20}>\dfrac{1}{2}\)
tính chất trên gọi là tính chất bắc cầu, ta so sánh hai phân số với một số (phân số) thứ 3.
\(\left(\dfrac{1}{17}\right)^{14}=\dfrac{1}{17^{14}}< \dfrac{1}{16^{14}}=\dfrac{1}{\left(2^4\right)^{14}}=\dfrac{1}{2^{56}}\)
\(\left(\dfrac{1}{31}\right)^{11}=\dfrac{1}{31^{11}}>\dfrac{1}{32^{11}}=\dfrac{1}{\left(2^5\right)^{11}}=\dfrac{1}{2^{55}}\)
`17/20 = 119/140`
`11/14=110/140`
`=> 119/140 > 110/140`
`=> 17/20 > 11/14`
\(\dfrac{17}{20}=\dfrac{17\cdot14}{20\cdot14}=\dfrac{238}{280}\)
\(\dfrac{11}{14}=\dfrac{11\cdot20}{14\cdot20}=\dfrac{220}{280}\)
mà 238>220
nên \(\dfrac{17}{20}>\dfrac{11}{14}\)