K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

Bài 1:

a) Ta có: \(13A=\dfrac{13^{16}+13}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)

\(13B=\dfrac{13^{17}+13}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)

\(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\)

\(\Rightarrow A>B\)

Vậy A > B

b) Ta có: \(1999C=\dfrac{1999^{2000}+1999}{1999^{2000}+1}=1+\dfrac{1998}{1999^{2000}+1}\)

\(1999D=\dfrac{1999^{1999}+1999}{1999^{1999}+1}=1+\dfrac{1998}{1999^{1999}+1}\)

\(\dfrac{1998}{1999^{2000}+1}< \dfrac{1998}{1999^{1999}+1}\Rightarrow1+\dfrac{1998}{1999^{2000}+1}< 1+\dfrac{1999}{1999^{1999}+1}\)

\(\Rightarrow1999C< 1999D\)

\(\Rightarrow C< D\)

Vậy C < D

1 tháng 7 2017

a, \(\dfrac{1998}{1999}\) < \(\dfrac{1999}{2000}\)

b, \(\dfrac{47}{15}>\dfrac{29}{35}\)

c, \(\dfrac{12}{25}< \) \(\dfrac{25}{49}\)

12 tháng 4 2018
https://i.imgur.com/XM85QHj.jpg
6 tháng 7 2017

a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)

\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)

\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)

\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)

\(=5\dfrac{4}{23}.23\)

\(=\dfrac{119}{23}.23\)

\(=\dfrac{119}{23}\)

b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)

\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)

\(=\dfrac{-4}{6}+\dfrac{3}{2}\)

\(=\dfrac{-2}{3}+\dfrac{3}{2}\)

\(=\dfrac{-4}{6}+\dfrac{9}{6}\)

\(=\dfrac{5}{6}\)

c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)

\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)

\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)

\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)

\(=1-1\)

\(=0\)

d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)

(đợi đã, mình chưa tìm được hướng làm...)

6 tháng 7 2017

quy đồng lên

21 tháng 6 2017

Đây này má Ran mori

a) \(\left(5\dfrac{1}{7}-3\dfrac{3}{11}\right)-2\dfrac{1}{7}-1\dfrac{8}{11}\)

\(=5+\dfrac{1}{7}-3-\dfrac{3}{11}-2-\dfrac{1}{7}-1-\dfrac{8}{11}\)

\(=\left(5-3-2-1\right)+\left(\dfrac{1}{7}-\dfrac{3}{11}-\dfrac{1}{7}-\dfrac{8}{11}\right)\)

\(=-1+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-\left(\dfrac{3}{11}+\dfrac{8}{11}\right)\)

\(=-1+0-1=-2\)

21 tháng 6 2017

a)\(\left(5\dfrac{1}{7}-3\dfrac{3}{11}\right)-2\dfrac{1}{7}-1\dfrac{8}{11}\)

= \(\left(5+\dfrac{1}{7}-3+\dfrac{3}{11}\right)-2+\dfrac{1}{7}-1+\dfrac{8}{11}\)

= \(5-\dfrac{1}{7}+3-\dfrac{3}{11}-2+\dfrac{1}{7}-1+\dfrac{8}{11}\)

= \(\left(5-3-2-1\right)+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{8}{11}-\dfrac{3}{11}\)

= \(-1+2+\dfrac{5}{11}\)

= \(1+\dfrac{5}{11}=\dfrac{1}{1}+\dfrac{5}{11}=\dfrac{11}{11}+\dfrac{5}{11}=\dfrac{16}{11}\)

Vậy :câu a) = \(\dfrac{16}{11}\)

1 tháng 11 2016

giờ trả lời còn được tick ko bạn

4 tháng 11 2016

được mà bn

20 tháng 8 2017

a, \(4\dfrac{5}{37}\)-\(3\dfrac{4}{5}\)+ \(8\dfrac{15}{29}\)- \(3\dfrac{5}{37}\)+ \(6\dfrac{14}{29}\)

=(\(4\dfrac{5}{37}\)-\(3\dfrac{5}{37}\))+(\(8\dfrac{15}{29}\)+\(6\dfrac{14}{29}\))-\(3\dfrac{4}{5}\)

=(4-3)+(\(\dfrac{5}{37}\)-\(\dfrac{5}{37}\))+(8+6)+(\(\dfrac{15}{29}\)+\(\dfrac{14}{29}\))-3\(\dfrac{4}{5}\)

=1+ 15-\(3\dfrac{4}{5}\)=13-\(\dfrac{4}{5}\)=\(\dfrac{61}{5}\)

b, 60\(\dfrac{7}{13}\)+ 50\(\dfrac{8}{13}\)-11\(\dfrac{2}{13}\)

=(60+50-11)+(\(\dfrac{7}{13}\)+ \(\dfrac{8}{13}\)-\(\dfrac{2}{13}\))

=99+1=100

c, đáp án bằng \(\dfrac{-2}{3}\). bạn tự tính nha

28 tháng 2 2018

Ta có :

\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)

\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)

4 tháng 8 2018

bài 2:tính hợp lý

1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)

\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)

\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)

\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)

Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)