K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: Ta có: \(A=\left(k-4\right)\left(k^2+4k+16\right)-\left(k^3+128\right)\)

\(=k^3-64-k^3-128\)

=-192

b: Ta có: \(B=\left(2m+3n\right)\left(4m^2-6mn+9n^2\right)-\left(3m-2n\right)\left(9m^2+6mn+4n^2\right)\)

\(=8m^3+27n^3-27m^3+8n^3\)

\(=-19m^3+35n^3\)

Bài 4: 

a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)

\(\Leftrightarrow9x=9\)

hay x=1

b: ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(\Leftrightarrow x^3+8-x^3+2x=15\)

\(\Leftrightarrow2x=7\)

hay \(x=\dfrac{7}{2}\)

21 tháng 7 2019

Đề bài là j vậy bạn???

4 tháng 10 2020

Bài 2 : 

a. A = 2 ( x3 + y3 ) - 3 ( x2 + y2 ) với x + y = 1

=> A = 2 ( x + y ) ( x2 - xy + y2 ) - 3 [ ( x + y )- 2xy ]

=> A = 2 [ ( x + y )- 3xy ] - 3 ( 1 - 2xy )

=> A = 2 ( 1 - 3xy ) - 3 + 6xy

=> A = 2 - 6xy - 3 + 6xy

=> A = - 1

B = x3 + y3 + 3xy với x + y = 1

=> B = ( x+ 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

=> B = ( x + y )3 - 3xy ( x + y - 1 )

=> B = 13 - 3xy . 0

=> B = 1

4 tháng 10 2020

Bài 1.

a) ( x - 1 )3 + ( 2 - x )( 4 + 2x + x2 ) + 3x( x + 2 ) = 16

<=> x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x = 16

<=> 9x + 7 = 16

<=> 9x = 9

<=> x = 1

b) ( x + 2 )( x2 - 2x + 4 ) - x( x2 - 2 ) = 15

<=> x3 + 8 - x3 + 2x = 15

<=> 2x + 8 = 15

<=> 2x = 7

<=> x = 7/2

c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 15

<=> ( x - 3 )[ ( x - 3 )2 - ( x2 + 3x + 9 ) + 9( x2 + 2x + 1 ) = 15

<=> ( x - 3 )( x2 - 6x + 9 - x2 - 3x - 9 ) + 9x2 + 18x + 9 = 15

<=> ( x - 3 ).(-9x) + 9x2 + 18x + 9 = 15

<=> -9x2 + 27x + 9x2 + 18x + 9 = 15

<=> 45x + 9 = 15

<=> 45x = 6

<=> x = 6/45 = 2/15

d) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 3

<=> x( x2 - 25 ) - ( x3 + 8 ) = 3

<=> x3 - 25x - x3 - 8 = 3

<=> -25x - 8 = 3

<=. -25x = 11

<=> x = -11/25

Bài 2.

a) A = 2( x3 + y3 ) - 3( x2 + y2 )

= 2( x + y )( x2 - xy + y2 ) - 3x2 - 3y2

= 2( x2 - xy + y2 ) - 3x2 - 3y2

= 2x2 - 2xy + 2y2 - 3x2 - 3y2

= -x2 - 2xy - y2

= -( x2 + 2xy + y2 )

= -( x + y )2

= -(1)2 = -1

b) B = x3 + y3 + 3xy 

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 1 - 3xy.0

= 1

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

NM
9 tháng 8 2021

bài 1.

a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)

b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)

c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)

d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)

.bài 2

a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)

b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)

c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)

d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)

9 tháng 8 2021

Trả lời:

Bài 1: Rút gọn biểu thức:

a) A = ( x - y )2 + ( x + y )2

= x2 - 2xy + y2 + x2 + 2xy + y2

= 2x2 + 2y2 

b) B = ( x + y )2 - ( x - y )2 

= x2 + 2xy + y2 - ( x2 - 2xy + y2 )

= x2 + 2xy + y2 - x2 + 2xy - y2

= 4xy

c) C = ( 2a + b )2 - ( 2a - b )2 

= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )

= 4a2 + 4ab + b2 - 4a2 + 4ab - b2 

= 8ab

d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4

= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4

= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4

= - 4x2 + 20x - 13

Bài 2: Rút gọn rồi tính giá trị biểu thức:

a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )

= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 ) 

= 2x2 + 6x - 2x2 + 4x + 16

= 10x + 16

Thay x = 1/2 vào A, ta có:

\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)

b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x

= 9x2 + 24x + 16 - x2 + 16 - 10x 

= 8x2 + 14x + 32

Thay x = - 1/10 vào B, ta có:

\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)

c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )

= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )

= - 3x2 + 6x + 3x2 - 12

= 6x - 12

Thay x = 1 vào C, ta có:

\(C=6.1-12=-6\)

d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 ) 

= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x

= 4x - 5

Thay x = - 1 vào D, ta có:

\(D=4.\left(-1\right)-5=-9\)

4 tháng 8 2018

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)

Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm

4 tháng 8 2018

a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)

Vậy MIN A = 1   khi  x = 4

b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)

Vậy MIN T = 3   khi  x = 2

c)  \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\) 

Vậy MIN H = -4  khi   x = -1

d)  \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

Vậy MIN E = 8   khi  x = y = 2

e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy MIN  K = 1    khi  x = 1/2;  y = 1

f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)

Vậy MIN   M = 5/6  khi  x = -1/3

17 tháng 12 2016

a) (2x+1)^2+2(4x^2-2)+(2x-1)^2=4x2+4x+1+8x2-4+4x2-4x+1=16x2-2

4 tháng 8 2018

Bài 1:

a) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)

\(\Rightarrow x^3-3x^2+3x-1+2^3-x^3+3x^2+6x=17\)

\(\Rightarrow9x+7=17\)

\(\Rightarrow9x=17-7=10\)

\(\Rightarrow x=\dfrac{10}{9}\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(\Rightarrow x^3+2^3-x^3+2x=15\)

\(\Rightarrow8+2x=15\)

\(\Rightarrow2x=15-8=7\)

\(\Rightarrow x=\dfrac{7}{2}\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Rightarrow x^3-3x^2.3+3x.3^2-3^3-x^3+3^3+9\left(x^2+2x+1\right)=15\)

\(\Rightarrow-9x^2+27x+9x^2+18x+9=15\)

\(\Rightarrow45x+9=15\)

\(\Rightarrow45x=6\)

\(\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)

d) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Rightarrow x\left(x^2-5^2\right)-x^3-2^3=3\)

\(\Rightarrow x^3-25x-x^3-8=3\)

\(\Rightarrow-25x-8=3\)

\(\Rightarrow-25x=3+8=11\)

\(\Rightarrow x=-\dfrac{11}{25}\)

Bài 2:

a) Ta có:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\)

\(B=2^{16}-1\)

Vì 216 - 1 < 216

=> B < A

b) Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{128}-1\right)\)

Vì 1/2( 3128 - 1) < 3128 - 1

=> A < B