Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
a) \(\sqrt{\left(\sqrt{7-2}\right)^2}=\sqrt{5}\)
b)\(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-3\sqrt{2}\right)^2}\)
=\(\sqrt{2}-1-2+3\sqrt{2}=4\sqrt{2}-3\)
c)\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=2\sqrt{3}\)
d) hình như bn ghi sai
e)\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
=\(\left(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{4-2\sqrt{3}}}+\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{4+2\sqrt{3}}}\right):\sqrt{2}\)
=\(\left(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{3}-1}+\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{3}+1}\right):\sqrt{2}\)
=\(\dfrac{\sqrt{2+\sqrt{3}}\left(\sqrt{3}+1\right)+\sqrt{2-\sqrt{3}}\left(\sqrt{3}-1\right)}{2\sqrt{2}}\)
=\(\dfrac{\sqrt{6+3}+\sqrt{2+\sqrt{3}}+\sqrt{6-3}-\sqrt{2+\sqrt{3}}}{2\sqrt{2}}\)
=\(\dfrac{3+\sqrt{2+\sqrt{3}}+\sqrt{3}-\sqrt{2+\sqrt{3}}}{2\sqrt{2}}\)
=\(\dfrac{3+\sqrt{3}}{2\sqrt{2}}\)
f) \(\sqrt{9a^2}+3a-7=-3a+3a-7=-7\)
g)\(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}+3x+2\)
=\(\dfrac{\sqrt{\left(2x-1\right)^2}}{4x-2}+3x+2=\dfrac{2x-1}{2\left(2x-1\right)}+3x+2\)
=\(\dfrac{1}{2}+3x+2=\dfrac{5}{2}+3x\)
h)\(\sqrt{\left(5a-1\right)^2}+2a-3\)
nếu a<0 :\(-5a+1+2a-3=-3a-2\)
nếu a>0 : \(5a-1+2a-3=7a-4\)
i)\(\sqrt{\dfrac{2a}{5}}.\sqrt{\dfrac{5a}{18}}+2\left(a-1\right)\)
=\(\sqrt{\dfrac{10a^2}{90}}+2a-2=\sqrt{\dfrac{a^2}{9}}+2a-2\)
=\(\dfrac{a}{3}+2a-2=\dfrac{7a}{3}-2\)
a: \(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=12\sqrt{2x}\)
b: \(=6-4\sqrt{3}+4\sqrt{3}-8=-2\)
c: \(=\sqrt{2}+1+2-\sqrt{2}=3\)
d: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}+2\sqrt{3}\right)=0\)
f: \(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}=-6\sqrt{6}\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)
Làm nốt nè :3
\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-2}{2x}>0\)
\(\Leftrightarrow x-2>0\left(do:x>0\right)\)
\(\Leftrightarrow x>2\)
\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)
\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)
Kết hợp với DKXĐ : \(0< a< 1\)