Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\frac{2^7\cdot\left(3^2\right)^3}{2^5\cdot3^5\cdot2^3}=\frac{2^7\cdot3^6}{2^8\cdot3^5}=\frac{3}{2}\)
câu a)
\(=\frac{2^7\times\left(3^2\right)^3}{2^5\times3^5\times2^3}=\frac{2^7\times3^6}{2^8\times3^5}=\frac{3}{2}\)
a.ta có :4^2.4^3/2^10=2^4.2^6/2^10=2^10/2^10=1
b. ta co :(0,6)^5/(0,2)^5=(0,6/0,2)^5=3^5=243
BÀI 1
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}.\)
bài 2
a) \(\frac{1}{2}-\frac{1}{3}+\frac{1}{12}=\frac{6}{12}-\frac{4}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
b) \(\frac{9^9.27^4}{3^8.81^5}=\frac{\left(3^2\right)^9.\left(3^3\right)^4}{3^8.\left(3^4\right)^5}=\frac{3^{18}.3^{12}}{3^8.3^{20}}=\frac{3^{30}}{3^{28}}=3^2=9\)
Study well
Bài 1: \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}\)
Bài 2:
a)\(\frac{1}{2}-\frac{1}{3}+\frac{1}{12}=\frac{6}{12}-\frac{4}{12}+\frac{1}{12}=\frac{6-4+1}{12}=\frac{1}{4}\)
b)\(\frac{9^9.27^4}{3^8.81^5}=\frac{9^9.3^{12}}{3^8.9^{10}}=\frac{3^4}{9}=\frac{3^4}{3^2}=3^2=9\)
\(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
a, \(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{4+6}}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
b,\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}\)
c, \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}\)
d, \(\frac{6^3+3.6^2+3^3}{-13}=\frac{\left(2.3\right)^3+3\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}\)
\(=\frac{2^3.3^3+3^3.2^2+3^3}{-13}=\frac{3^9\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=3^3=27\)
a,\(\frac{4^2.4^3}{2^{10}}=\frac{4^5}{2^{10}}=\frac{4^5}{4^5}=1\)
\(\frac{\left(0.6\right)^5}{\left(0.2\right)^6}=1215\)
còn lại làm đc mà
a) \(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
b) \(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{3^5.0,2^5}{0,2^6}=\frac{3^5}{0,2}=\frac{243}{0,2}=1215\)
c) \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3}{2^{11}}=\frac{3}{2^4}=\frac{3}{16}\)
d) \(\frac{6^3+3.6^2+3^3}{-13}=\frac{6^2\left(6+3\right)+3^3}{-13}=\frac{6^2.9+3^2}{-13}=\frac{3^2\left(6^2+1\right)}{-13}=\frac{9.37}{-13}=\frac{333}{-13}\)
Bài làm
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(=\left(\frac{3}{7}\right)^2+\left(\frac{1}{2}\right)^2\)
\(=\frac{9}{49}+\frac{1}{4}\)
\(=\frac{36}{196}+\frac{49}{196}\)
\(=\frac{85}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(=\left(-\frac{1}{12}\right)^2\)
\(=\frac{1}{144}\)
\(c,\frac{5^4.20^4}{25^5.4^5}\)
\(=\frac{5^4.\left(5.4\right)^4}{\left(5.5\right)^5.4^5}\)
\(=\frac{5^4.5^4.4^4}{5^5.5^5.4^5}\)
\(=\frac{1}{5.5.4}\)
\(=\frac{1}{100}\)
~ Check đúng cho minh nha. ~
# Học tốt #
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(< =>\left(\frac{6}{14}+\frac{7}{14}\right)^2\)
\(< =>\left(\frac{13}{14}\right)^2\)
\(< =>\frac{169}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(< =>\left(\frac{9}{12}-\frac{10}{12}\right)^2\)
\(< =>\left(\frac{-1}{12}\right)^2\)
\(< =>\frac{-1}{144}\)
\(c,\frac{5^4\cdot20^4}{25^5\cdot4^5}\)
\(< =>\frac{25^2\cdot\left(4\right)^4\cdot\left(5\right)^4}{25^5\cdot4^5}\)
\(< =>\frac{1\cdot1\cdot\left(5\right)^4}{25^3\cdot4}\)
\(< =>\frac{1\cdot25^2}{25^3\cdot4}\)
\(< =>\frac{1}{25\cdot4}\)
\(< =>\frac{1}{100}\)
a)\(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{6}{14}+\frac{7}{14}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
b)\(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(\frac{9}{12}-\frac{10}{12}\right)^2=\left(-\frac{1}{12}\right)^2=\frac{1}{144}\)
c)\(\frac{5^4\cdot20^4}{25^5\cdot4^5}=\frac{\left(20\cdot5\right)^4}{\left(25\cdot4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
d)\(\left(-\frac{10}{3}\right)^5\cdot\left(-\frac{6}{5}\right)^4=\left(-\frac{10}{3}\right)^4\cdot\left(-\frac{10}{3}\right)\cdot\left(-\frac{6}{5}\right)^4=\left[-\frac{10}{3}\cdot\frac{-6}{5}\right]^4\cdot\frac{-10}{3}=4^4\cdot\frac{-10}{3}=256\cdot\frac{-10}{3}=\frac{-2560}{3}\)
a.
\(\frac{2^7\times9^3}{6^5\times8^2}=\frac{2^7\times\left(3^2\right)^3}{\left(2\times3\right)^5\times\left(2^3\right)^2}=\frac{2^7\times3^6}{2^5\times3^5\times2^6}=\frac{3}{2^4}=\frac{3}{16}\)
b.
\(\frac{6^3+3\times6^2+3^3}{-13}=\frac{\left(2\times3\right)^3+3\times\left(3\times2\right)^2+3^3}{-13}=\frac{2^3\times3^3+3\times3^2\times2^2+3^3}{-13}=\frac{8\times3^3+3^3\times4+3^3}{-13}\)\(=\frac{3^3\times\left(8+4+1\right)}{-13}=\frac{27\times13}{-13}=-27\)
c.
\(\frac{5^4\times20^4}{25^5\times4^5}=\frac{\left(5\times20\right)^4}{\left(25\times4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
d.
\(\left(\frac{5^4-5^3}{125^4}\right)=\frac{5^3\times\left(5-1\right)}{\left(5^3\right)^4}=\frac{5^3\times4}{5^{12}}=\frac{4}{5^9}\)
a)\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}\)
b)\(\frac{6^3+3.6^2+3^3}{-13}=\frac{6.6^2+3.6^2+3^3}{-13}=\frac{6^2.\left(6+3\right)+3^3}{-13}=\frac{6^2.9+3^3}{-13}=\frac{6^2.3^2+3.3^2}{-13}=\frac{3^2.\left(6^2+3\right)}{-13}=\frac{3^2.39}{-13}=3^2.\left(-3\right)=-27\)
c)\(\frac{5^4.20^4}{25^5.4^5}=\frac{100^4}{100^5}=\frac{1}{100}\)