K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

"Chấm" nhẹ hóng cao nhân ạ :)

P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)

9 tháng 2 2019

Câu 3: Tham khảo đây nhá: Câu hỏi của Trương Thanh Nhân, t làm r,giờ lười đánh lại.

25 tháng 1 2019

1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab

Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac

Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)

\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)

2. tương tự

3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng

13 tháng 3 2017

a) đáp án A=1

b) B=0

c) C=1

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

10 tháng 7 2016

a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:

+a khác b

+b khác c

+c khác a

\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)

Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)

    \(bc=-\left(ab+ac\right)=-ab-ac\)

\(ac=-\left(ab+bc\right)=-ab-bc\)

Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)

                               \(c^2+2ab=\left(c-a\right)\left(c-b\right)\)

Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

10 tháng 7 2016

những câu còn lại tương tự,bn tự làm nhé
 

25 tháng 1 2019

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\text{Mà }\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\Rightarrow2ab+2bc+2ac=0\)

\(\Rightarrow\hept{\begin{cases}2ab=-2bc-2ac\\2bc=-2ac-2ab\\2ac=-2ab-2bc\end{cases}}\)

\(A=\frac{a^2}{a^2-2ab-2ac}+\frac{b^2}{b^2-2ab-2bc}+\frac{c^2}{c^2-2bc-2ac}\)

\(A=\frac{a^2}{a.\left(a-2b-2c\right)}+\frac{b^2}{b.\left(b-2a-2c\right)}+\frac{c^2}{c.\left(c-2b-2c\right)}\)

\(A=\frac{a}{a-2b-2c}+\frac{b}{b-2a-2c}+\frac{c}{c-2b-2c}\)

25 tháng 1 2019

bạn ơi không rút gọn đc nữa ak

19 tháng 1 2021

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=> \(\frac{ab+bc+ac}{abc}=0\)

=> \(ab+bc+ac=0\)

=> \(\hept{\begin{cases}ab=-bc-ac\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)

a) \(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{bc}{a^2-ab-ac+bc}+\frac{ca}{b^2-ab-bc+ac}+\frac{ab}{c^2-ac-bc+ab}\)

\(=\frac{bc}{a\left(a-b\right)-c\left(a-b\right)}+\frac{ca}{b\left(b-a\right)-c\left(b-a\right)}+\frac{ab}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ca}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{bc}{\left(a-b\right)\left(a-c\right)}-\frac{ca}{\left(a-b\right)\left(b-c\right)}+\frac{ab}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{bc\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{ca\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{b^2c-bc^2}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{ca^2-c^2a}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{b^2c-bc^2-ca^2+c^2a+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(c^2a-bc^2\right)-\left(ca^2-b^2c\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left(c^2-ac-bc+ab\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left[\left(ab-bc\right)-\left(ac-c^2\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

19 tháng 1 2021

b) \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)

\(=\frac{a^2}{a^2-ab-ac+bc}+\frac{b^2}{b^2-ab-bc+ac}+\frac{c^2}{c^2-bc-ac+ab}\)

\(=\frac{a^2}{a\left(a-b\right)-c\left(a-b\right)}+\frac{b^2}{b\left(b-a\right)-c\left(b-a\right)}+\frac{c^2}{c\left(c-b\right)-a\left(c-b\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{b^2\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2b-a^2c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{b^2a-b^2c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2b-a^2c-b^2a+b^2c+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left(ab-ac-bc+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

3 tháng 1 2016

khó quá xin lỗi nha em  mới hok lớp 7

3 tháng 1 2016

Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.

NM
7 tháng 2 2021

bài 1. ta có

\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)

\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng

Bài 2

ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)

Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)

\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)

Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

7 tháng 2 2021

bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad 

\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0

\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0

\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)

Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)

=> đpcm tự kết luận

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)