Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 25 \(\equiv\)1 ( mod 13 )
22017 = ( 25 )403 . 22 \(\equiv\)1403 . 2 \(\equiv\)2 ( mod 13 )
nếu là 20172017 thì bằng 1551693,6153
lấy 4 chữ số ở phần thập phân
t.i.c.k cho mình nhé
a) Ta có :
\(\left|x-3\right|+\left|y+1\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}}\)
Vậy \(x=3\)và \(y=-1\)
b) Ta có :
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy \(x=1\)và \(y=-2\)
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
Trong phép chia , số dư phải bé hơn số chia .
Vậy số dư lớn nhất phải là 6
Giá trị của a là :
16 . 7 + 6 = 118
Vậy a bằng 118
Khi chia cho 7 thì số dư lớn nhất là 6
=>a là:16x7+6=118
P/s:...ko chắc nữa...
~~~~~~~.~~~~~~~~~~~