Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x8+x4+1 = (x8+x7+x6) +(-x7-x6-x5)+(x5+x4+x3)+(-x3-x2-x)+(x2+x+1) = (x2+x+1)(x6-x5+x3-x+1)
b) x5+x4+1 = x5 +x4+x3-x3-x2-x+x2+x+1=(x2+x+1)(x3-x+1)
tương tự thì c) và d) cx có nhân tử x2+x+1
e) = x3-x2-5x2+5x+6x+6 = (x-1)(x2-5x+6) = (x-1)(x2-2x-3x+6) = (x-1)(x-2)(x-3)
a) Ta có: \(x^8+x^4+1=\left(x^4\right)^2+2.x^4.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\) Không phân tích được
Bài 1:
\(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)
\(=2c^2\left(a-b\right)+a^2b-ab^2+b^2c-a^2c+abc-a^2c\)
\(=2c^2\left(a-b\right)+ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)-ac\left(a-b\right)\)
\(=\left(a-b\right)\left(2c^2+ab-ac-cb-ac\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-2c\right)\)
Bài 2:
\(x^2+3x+1=0\Leftrightarrow x+\frac{1}{x}=-3\)(vì \(x=0\)không là nghiệm)
Ta có:
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right).x.\frac{1}{x}=-3^3-3.\left(-3\right)=-18\)
\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2=\left[\left(x+\frac{1}{x}\right)^2-2\right]^2-2=47\)
\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)
\(\Leftrightarrow x^7+\frac{1}{x^7}=\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=-18.47-\left(-3\right)=-843\)
\(a,x-3\sqrt{x}+2\)
\(=x-3\sqrt{x}+\frac{9}{4}-\frac{1}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2=\left(x+2\right)\left(x-2\right)\)
câu a mình nhìn nhầm :
\(=\left(x-1\right)\left(x+2\right)\)
b4 :
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x+2\sqrt{xy}+y=\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(d,x-4\sqrt{x}\sqrt{y}+4y=\left(\sqrt{x}-2\sqrt{y}\right)^2\)
b5:
\(a,ĐK:x\ge1\)
\(\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}-\frac{4}{5}\sqrt{25\left(x-1\right)}=1\)
\(\Leftrightarrow3\sqrt{x-1}+2\sqrt{x-1}-4\sqrt{x-1}=1\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
\(b,ĐK:x\ge5\)
\(\frac{1}{3}\sqrt{9\left(x-5\right)}+\frac{1}{2}\sqrt{4\left(x-5\right)}-\frac{7}{5}\sqrt{25\left(x-5\right)}=2\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{x-5}-7\sqrt{x-5}=2\)
\(\Leftrightarrow-5\sqrt{x-5}=2\)
\(\Leftrightarrow\sqrt{x-5}=-\frac{2}{5}\left(voli\right)\)
\(c,ĐK:x>0\)
\(\sqrt{x}+\frac{9}{\sqrt{x}}=6\)
\(\Leftrightarrow x+9=6\sqrt{x}\)
\(\Leftrightarrow x-6\sqrt{x}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\)
\(\Leftrightarrow x=9\left(tm\right)\)
\(\text{a)}x\sqrt{x}+\sqrt{x}-x-1\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)-\left(x+1\right)\)
\(=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(\sqrt{x}-1\right)\)
\(\text{b)}\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
\(=\left(\sqrt{ab}+2\sqrt{a}\right)+\left(3\sqrt{b}+6\right)\)
\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)
\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)
\(\text{c)}\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)
\(=\left(1+\sqrt{x}\right)^2-\left(2\sqrt{\sqrt{x}}\right)^2\)
\(=\left(1+\sqrt{x}+2\sqrt{\sqrt{x}}\right)\left(1+\sqrt{x}-2\sqrt{\sqrt{x}}\right)\)
\(\text{d)}\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{b}-1\right)\left(\sqrt{a}-1\right)\)
\(\text{e)}a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(=\left(a+\sqrt{a}\right)+\left(2\sqrt{ab}+2\sqrt{b}\right)\)
\(=\left[\left(\sqrt{a}\right)^2+\sqrt{a}\right]+\left(2\sqrt{ab}+2\sqrt{b}\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(\text{f)}x-2\sqrt{x-1}-a^2\)
\(=\left(\sqrt{x-2}\right)^2\left(\sqrt{\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2}\sqrt{\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2\sqrt{x-1}}+a\right)\left(\sqrt{x-2\sqrt{x-1}}-a\right)\)
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)