K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

1) x3 + 5x2 + 3x - 9

= x3 + 2x2 + 3x+ 6x - 3x - 9

= ( x3 + 2x2 ) + (3x2 + 6x ) - ( 3x + 9 )

= x2 ( x+ 2 ) + 3x ( x + 2) - 3( x +2 )

= ( x + 2 ) ( x2 + 3x -3 )

2) x3 + 5x+ 8x + 4

= ( x3 + x2 ) + ( 4x2 + 4x ) + ( 4x + 4 )

= x2 ( x + 1 ) + 4x ( x + 1 ) + 4 ( x + 1 )

= ( x + 1) ( x2 + 4x + 4 )

= (x + 1 ) ( x + 2 )2

3) x3 - 9x2 + 6x + 16

= x3 - 8x2 - x2 + 8x - 2x + 16

= ( x3 - 8x2 ) - ( x2 - 8x ) - ( 2x - 16 )

= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )

= ( x - 8 ) ( x2 - x - 2 )

4) x- 4x2 + x + 6

= x3 - 3x2 - x+ 3x - 2x + 6

= ( x3 - 3x2 ) - ( x2 - 3x ) - ( 2x - 6)

= x2 ( x - 3 ) - x ( x- 3 ) - 2 ( x - 3)

= ( x - 3 ) ( x2 - x - 2 )

22 tháng 11 2017

a, = (x^3-x^2)-(4x^2-4x)+(4x-4)

    = (x-1).(x^2-4x+4) = (x-1).(x-2)^2

b, = (x^3+x^2)-(10x^2+10x)+(16x+16)

 = (x+1).(x^2-10x+16)

 = (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)

k mk nha

a)= (x^3-x^2)-(4x^2-4x)+(4x-4)

    = (x-1).(x^2-4x+4)

    = (x-1).(x-2)^2

b)= (x^3+x^2)-(10x^2+10x)+(16x+16)

 = (x+1).(x^2-10x+16)

 = (x+1).[ (x^2-2x)-(8x-16) ]

 = (x+1).(x-2).(x-8)

P/s tham khảo nha

14 tháng 10 2020

6) \(9x^3y^2+3x^2y^2=3x^2y^2\left(3x+1\right)\)

7) \(x^3+2x^2+3x=x\left(x^2+2x+3\right)\)

8) \(6x^2y+4xy^2+2xy=2xy\left(3x+2y+1\right)\)

9) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=5x\left(x-2y\right)\left(x-3\right)\)

10) \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(3+5x\right)\)

14 tháng 10 2020

6) 9x3y2 + 3x2y2 = 3x2y2( 3x + 1 )

7) x3 + 2x2 + 3x = x( x2 + 2x + 3 )

8) 6x2y + 4xy2 + 2xy = 2xy( 3x + 2y + 1 )

9) 5x2( x - 2y ) - 15x( x - 2y ) = 5x( x - 2y )( x - 3 )

10 3( x - y ) - 5x( y - x ) = 3( x - y ) + 5x( x - y ) = ( x - y )( 3 + 5x )

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

19 tháng 9 2018

A = 6x4 - 5x3 + 4x2 + 2x - 1

   = 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1

   = 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )

   = ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )

    = ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )

     = ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]

     = ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )

B = 4x4 + 4x3 + 5x2 + 8x - 6

    = 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6

     = 2x3 ( 2x - 1 ) + 3x( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )

     = ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )

     = ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]

      = ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )

C = x4 + x3 - 5x2 + x - 6

   = x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6 

   = x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )

   = ( x - 2 ) ( x3 + 3x2 + x + 3 )

    = ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]

    = ( x - 2 ) ( x + 3 ) ( x2 + 1 ) 

16 tháng 8 2020

a)   \(=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)

\(=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)\)

\(=\left(x^3-2x^2+2x-1\right)\left(x-1\right)\)

\(=\left(x^3-x^2-x^2+x+x-1\right)\left(x-1\right)\)

\(=\left(x^2-x+1\right)\left(x-1\right)^2\)

c)

\(=6x^4-12x^3+17x^3-34x^2-4x^2+8x-3x+6\)

\(=6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(6x^3+17x^2-4x-3\right)\left(x-2\right)\)

\(=\left(6x^3+18x^2-x^2-3x-x-3\right)\left(x-2\right)\)

\(=\left(6x^2-x-1\right)\left(x+3\right)\left(x-2\right)\)

\(=\left(2x-1\right)\left(3x+1\right)\left(x+3\right)\left(x-2\right)\)

16 tháng 8 2020

b)

\(=x^4+1011x^2+1011+\left(1010x^2-2020x+1010\right)\)

\(=x^4+1011x^2+1011+1010\left(x^2-2x+1\right)\)

\(=x^4+1011x^2+1011+1010\left(x-1\right)^2\)

CÓ:   \(x^4+1010\left(x-1\right)^2+1011x^2\ge0\forall x\)

=>   \(x^4+1010\left(x-1\right)^2+1011x^2+1011\ge1011>0\forall x\)

=> ĐA THỨC b > 0 => Ko ph được thành nhân tử.

1 tháng 10 2020

1) \(x^3+2x-3\)

\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)

\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+3\right)\)

2) \(x^3-6x+4\)

\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x-2\right)\)

1 tháng 10 2020

3) \(x^3-2x^2+1\)

\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)

\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-x-1\right)\)

4) \(x^3+5x^2-12\)

\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)

\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+3x-6\right)\)

25 tháng 9 2017

Ta có : x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

CÁC Ý SAU TƯƠNG TỰ

19 tháng 2 2018

   x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) .