Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0\le xy+yz+zx-2xyz\le \frac{7}{27} - Diễn đàn Toán học
\(a,2x+7\ge0\Leftrightarrow2x\ge-7\Rightarrow x\ge\dfrac{-7}{2}\)
\(b,5-2x\le0\Leftrightarrow-2x\le-5\Leftrightarrow x\ge\dfrac{5}{2}\)
\(c,\dfrac{x+2}{x^2+1}\ge0\Leftrightarrow x+2\ge x^2+1\Leftrightarrow x+2-x^2-1\ge0\Leftrightarrow x-x^2+1\ge0\)\(\Leftrightarrow-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{5}{4}\ge0\Leftrightarrow-\left(x-\dfrac{1}{2}\right)^2\ge-\dfrac{5}{4}\Rightarrow\left(x-\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\)\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}\ge\sqrt{\dfrac{5}{4}}\\x-\dfrac{1}{2}\ge-\sqrt{\dfrac{5}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge\sqrt{\dfrac{5}{4}}+\dfrac{1}{2}\\x\ge-\sqrt{\dfrac{5}{4}}+\dfrac{1}{2}\end{matrix}\right.\)
\(d,\dfrac{x^2+3}{2-x}< 0\Leftrightarrow x^2+3< 2-x\Leftrightarrow x^2+3-2+x\ge0\Leftrightarrow\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}\ge0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{-3}{4}\)( vô lí )
Vậy : BPT trên vô nghiệm
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
Mk thấy mấy cái này dễ mà, toàn trong sách giáo khoa hết á. Bạn cố gắng đọc và lm đi. Sắp lên lớp 9 rồi đó
a)\(\dfrac{2x^2+10}{1-x}\le0\Rightarrow1-x< 0\Leftrightarrow x>1\)
b) \(\dfrac{3x-4}{x+2}\ge4\Leftrightarrow\dfrac{3x-4}{x+2}-\dfrac{4\left(x+2\right)}{x+2}\ge0\Leftrightarrow\dfrac{-x-12}{x+2}\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x-12\le0\\x+2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-12\\x< -2\end{matrix}\right.\Leftrightarrow-12\le x< -2}}\\\left\{{}\begin{matrix}-x-12\ge0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-12\\x>-2\end{matrix}\right.\end{matrix}\right.\)\(S=\left\{x|-12\le x< -2\right\}\)
c) \(\dfrac{1}{x+4}\le\dfrac{1}{x-2}\Leftrightarrow\dfrac{6}{\left(x+4\right)\left(x-2\right)}\le0\Rightarrow\left(x+4\right)\left(x-2\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+4>0\\x-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x< 2\end{matrix}\right.\Leftrightarrow-4< x< 2}}\\\left\{{}\begin{matrix}x+4< 0\\x-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x>2\end{matrix}\right.\end{matrix}\right.\)
\(S=\left\{x|-4< x< 2\right\}\)
a)x-25 ( x≥0 )
\(=\sqrt{x}^2-5^2=\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)\)
b) x-7 ( x≥0 )
\(=\sqrt{x}^2-\sqrt{7}^2=\left(\sqrt{x}-\sqrt{7}\right)\left(\sqrt{x}+\sqrt{7}\right)\)
3 câu kia tách thành mũ 3 nhé