Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x^4-8x^3+4x^2\)
\(=4x^2\cdot\left(x^2-2x+1\right)\)
\(=4x^2\cdot\left(x-1\right)^2\)
\(b,x^2-y^2+5\cdot\left(y-x\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)-5\cdot\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(x+y-5\right)\)
\(c,3x^2-6xy+3y^2-12z^2\)
\(=3\cdot\left(x^2-2xy+y^2-4x^2\right)\)
\(=3\cdot\left[\left(x-y\right)^2-\left(2x\right)^2\right]\)
\(=3\cdot\left(x-y-2x\right)\cdot\left(x-y+2x\right)\)
3x2-6xy+3y2-12z2
=3x2-3.2xy+3y2-3.4z2
=3(y2-2xy+y2-4z2)
=3(2y2-2xy-4z2)
\(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(\left(x-y\right)^2-\left(2z\right)^2\right)=3\left(x-y-2z\right)\left(x-y+2z\right)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3.\left(x^2-2xy+y^2-4z^2\right)\)
\(=3.\left[\left(x-y\right)^2-4z^2\right]\)
\(=3.\left(x-y-2z\right).\left(x-y+2z\right)\)
a) 15x2 + 10x = 5x ( 3x +2 )
b) x2 - y2 +2x -2y
= (x-y) (x+y) + 2(x-y)
= (x - y) ( x + y + 2)
c) 3x2 + 6xy + 3y2 -12 z2
= 3 ( x2 +2xy+y2) -12z2
= 3 (x+y)2 - 12 z2
= 3 [(x+y)2 - 4z2 ]
= 3( x + y - 2z )( x + y + 2z)
d) x2 - 5 -6 = x2 -11
= (x - √11)(x+√11)
a, \(15x^2+10x=5x\left(3x+2\right)\)
b, \(x^2-y^2+2x-2y=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+2\right)\)
c, \(3x^2+6xy+3y^2-12z^2\)
\(=3\left(x^2+2xy+y^2-4z^2\right)\)
\(=3\left[\left(x+y\right)^2-\left(2z\right)^2\right]=3\left(x+y-2z\right)\left(x+y+2z\right)\)
d, \(x^2-5x-6=x^2-6x+x-6=x\left(x+1\right)-6\left(x+1\right)=\left(x-6\right)\left(x+1\right)\)
a) x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)
b)3x^2+6xy+3y^2-3z^2=3[(x^2+2xy+y^2)-z^2]=3[(x+y)^2-z^2]=3(x+y-z)(x+y+z)
a) = (x^2 + 2.2.x + 2^2) - y^2 = (x + 2)^2 - y^2 =(x + 2 - y) . (x + 2 +y)
3x^2 +3y^2 -6xy -12
=3(x^2 - 2xy +y^2 - 2^2 )
=3 (x-y)^2 - 2^2
=3(x-y-2)(x-y+2)
3(x+y) -(x^2+2xy+y^2)
=3(x+y) -(x+y)^2
(x+y)(3-x-y)
a) \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
b) \(x^2-25+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y+5\right)\left(x+y-5\right)\)