Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sorry Ngân Chu, đoạn chia hết cho 120 thì thêm cả chia hết cho 2 nữa, nên nhân vào mới ra 120 nhé!!
Bài 1:
a, (n + 3)2 - (n - 1)2
= (n + 3 - n + 1)(n + 3 + n - 1)
= 4(2n - 2)
= 8(n - 1)
Vì 8 \(⋮\) 8 nên 8(n - 1) \(⋮\) 8 với n \(\in\) Z
b, n5 - 5n3 + 4n
= n(n4 - 5n2 + 4)
= n(n4 - n2 - 4n2 + 4)
= n[n2(n2 - 1) - 4(n2 - 1)]
= n(n2 - 1)(n2 - 4)
= n(n - 1)(n + 1)(n - 2)(n + 2)
= (n - 2)(n - 1)n(n + 1)(n + 2)
Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích của 5 số nguyên liên tiếp nên chia hết cho 3, 5, 8
Mà 3 x 5 x 8 = 120
\(\Rightarrow\) (n - 2)(n - 1)n(n + 1)(n + 2) \(⋮\) 120 hay n5 - 5n3 + 4n \(⋮\) 120 với n \(\in\) Z
Bài 2:
a, 4x(x + 1) = 8(x + 1)
\(\Leftrightarrow\) 4x(x + 1) - 8(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(4x - 8) = 0
\(\Leftrightarrow\) 4(x + 1)(x - 2) = 0
\(\Leftrightarrow\) (x + 1)(x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy S = {-1; 2}
b, x2 - 6x + 8 = 0
\(\Leftrightarrow\) x2 - 6x + 9 - 1 = 0
\(\Leftrightarrow\) (x - 3)2 - 1 = 0
\(\Leftrightarrow\) (x - 3 - 1)(x - 3 + 1) = 0
\(\Leftrightarrow\) (x - 4)(x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy S = {4; 2}
c, x3 + x2 + x + 1 = 0
\(\Leftrightarrow\) x2(x + 1) + (x + 1) = 0
\(\Leftrightarrow\) (x + 1)(x2 + 1) = 0
Vì x2 + 1 > 0 với mọi x
\(\Rightarrow\) x + 1 = 0
\(\Leftrightarrow\) x = -1
Vậy S = {-1}
d, x3 - 7x - 6 = 0
\(\Leftrightarrow\) x3 - x - 6x - 6 = 0
\(\Leftrightarrow\) (x3 - x) - (6x + 6) = 0
\(\Leftrightarrow\) x(x2 - 1) - 6(x + 1) = 0
\(\Leftrightarrow\) x(x - 1)(x + 1) - 6(x + 1) = 0
\(\Leftrightarrow\) (x + 1)[x(x - 1) - 6] = 0
\(\Leftrightarrow\) (x + 1)(x2 - x - 6) = 0
\(\Leftrightarrow\) (x + 1)(x2 - 3x + 2x - 6) = 0
\(\Leftrightarrow\) (x + 1)[x(x - 3) + 2(x - 3)] = 0
\(\Leftrightarrow\) (x + 1)(x - 3)(x + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=-2\end{matrix}\right.\)
Vậy S = {-1; 3; -2}
Câu e hình như bạn viết nhầm 2 lần số 17x thì phải, mình sửa lại rồi!!
e, 3x3 - 7x2 + 17x - 5 = 0
\(\Leftrightarrow\) 3x3 - x2 - 6x2 + 2x + 15x - 5 = 0
\(\Leftrightarrow\) (3x3 - x2) + (-6x2 + 2x) + (15x - 5) = 0
\(\Leftrightarrow\) x2(3x - 1) - 2x(3x - 1) + 5(3x - 1) = 0
\(\Leftrightarrow\) (3x - 1)(x2 - 2x + 5) = 0
\(\Leftrightarrow\) (3x - 1)(x2 - 2x + \(\frac{1}{4}\) + \(\frac{19}{4}\)) = 0
\(\Leftrightarrow\) (3x - 1)[(x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\)] = 0
Vì (x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\) > 0 với mọi x nên
\(\Rightarrow\) 3x - 1 = 0
\(\Leftrightarrow\) x = \(\frac{1}{3}\)
Vậy S = {\(\frac{1}{3}\)}
Bài 3:
Hình như phần a thì 16(1 - x) mới đúng chứ!!
a, x2(x - 1) + 16(1 - x)
= x2(x - 1) - 16(x - 1)
= (x - 1)(x2 - 16)
= (x - 1)(x - 4)(x + 4)
Câu b, d, g mình chịu, hình như đề sai thì phải, mình ko nghĩ ra được!!
c, x3 - 3x2 - 3x + 1
= (x3 + 1) - (3x2 + 3x)
= (x + 1)(x2 + x + 1) - 3x(x + 1)
= (x + 1)(x2 + x + 1 - 3x)
= (x + 1)(x2 - 2x + 1)
= (x + 1)(x - 1)(x - 1)
e, x4 - 13x2 + 36
= x4 - 4x2 - 9x2 + 36
= x2(x2 - 4) - 9(x2 - 4)
= (x2 - 4)(x2 - 9)
= (x - 2)(x + 2)(x - 3)(x + 3)
f, (x2 + x)2 + 4x2 + 4x - 12
= (x2 + x)2 + 4x2 + 4x + 4 - 16
= (x2 + x)2 + 4(x2 + x) + 4 - 16
= (x2 + x + 2)2 - 16
= (x2 + x + 2 - 4)(x2 + x + 2 + 4)
= (x2 + x - 2)(x2 + x + 6)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
a) 4x2-8x=0
(2x)2-2.2.2x+4-4=0
(2x-2)2 =4
2x-2=2
2x =4
x=2
Nhớ k cho mk nha
1) bạn ktra lại đề
2) \(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
3)
a) \(x^2+x-2=0\)
<=> \(\left(x-1\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy...
b) \(3x^2+5x-8=0\)
<=> \(\left(x-1\right)\left(3x+8\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)
Vậy...
1/ \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow9x^2-6x-35=0\)
\(\Leftrightarrow\left(2x-1\right)^2-36=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+6\right)=0\)
2/ \(\left(3x+5\right)^2-4x^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x+5\right)=0\)
3/ \(25x^2-\left(4x-3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(9x-3\right)=0\)
1) ( 9x2 - 25 ) - ( 6x - 10 ) = 0
\(\Leftrightarrow\) [ ( 3x)2 - 52 ] - 2.( 3x + 5 ) = 0
\(\Leftrightarrow\)( 3x - 5 ).( 3x + 5 ) - 2.( 3x - 5 ) = 0
\(\Leftrightarrow\) ( 3x + 5 ).( 3x + 5 - 2 ) = 0
\(\Leftrightarrow\)( 3x + 5 ).( 3x + 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+5=0\\3x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-5\\3x=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{-5}{3}\\x=-1\end{cases}}\)
Vậy x = \(\frac{-5}{3}\) , x = -1
2) ( 3x + 5 )2 - 4x2 = 0
\(\Leftrightarrow\) ( 3x + 5 - 2x ).( 3x + 5 + 2x ) = 0
\(\Leftrightarrow\)( x + 5 ).( 5x + 5 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+5=0\\5x+5=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-5\\x=-1\end{cases}}\)
Vậy x = -5 , x = -1
3) 25x2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\)( 5x )2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\) ( 5x - 4x + 3 ).(5x + 4x - 3 ) = 0
\(\Leftrightarrow\)( x + 3 ).( 9x - 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\9x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\9x=3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)
Vậy x = 3 , x = \(\frac{1}{3}\)
Bài 1:
a) 25\(x^2\) - 0,09
= \(\left(5x\right)^2-0,3^2\)
= (5x - 0,3) (5x +0,3)
Bài 5:
a: \(=\left(2x-3\right)^2\)
b: \(=\left(2x+1\right)^2\)
c: \(=\left(6x+1\right)^2\)
d: \(=\left(3x-4y\right)^2\)
e: \(=\left(\dfrac{1}{2}x-2y\right)^2\)
f: \(=-\left(x-5\right)^2\)
Bài 1:
\(36\left(x-5\right)^2-25\left(x-y+4\right)^2\)
\(=\left[6\left(x-5\right)\right]^2-\left[5\left(x-y+4\right)\right]^2\)
\(=\left[6\left(x-5\right)-5\left(x-y+4\right)\right]\left[6\left(x-5\right)+5\left(x-y+4\right)\right]\)
\(=\left(x+5y-50\right)\left(11x-5y-10\right)\)
Bài 2:
a) \(\left(4x-1\right)^2-4x+1=0\)
\(\left(4x-1\right)^2-\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(4x-1-1\right)=0\)
\(\left(4x-1\right)\left(4x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\frac{1}{2}\end{cases}}}\)
b) \(\left(3x\right)^2-\left(3x-1\right)^2=0\)
\(\left(3x-3x+1\right)\left(3x+3x-1\right)=0\)
\(6x-1=0\)
\(x=\frac{1}{6}\)
c) \(36x^2-25-\left(6x+5\right)\left(6x-5\right)=0\)
\(36x^2-25-36x^2+25=0\)
\(0=0\)( đúng với mọi x )
Bài 3 : xem lại đề