Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
a: \(=4x^2-25-4x^2+12x-9-12x=-34\)
b: \(=8y^3-12y^2+6y-1-2y\left(4y^2-12y+9\right)-12y^2+12y\)
\(=8y^3-24y^2+18y-1-8y^3+24y^2-18y=-1\)
c: \(=x^3+27-x^3-20=7\)
d: \(=3y\left(9y^2+12y+4\right)-27y^3+1-36y^2-12y-1\)
\(=27y^3+36y^2+12y-27y^3-36y^2-12y\)
=0
cau a : (3x^2y-6xy+9x)(-4/3xy)
=-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x
=-4x+8-8y
cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)
=(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3
=(1/3)^3 + (2y)^3x-2
cau c : (x-2)(x^2-5x+1)+x(x^2+11)
=x^3-5x^2+x-2x^2+10x-2+x^3+11x
=2x^3-7x^2+22x-2
cau d := x^3 + 6xy^2 -27y^3
cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y
cau f := x^2-2x+2x -4-2x-1
= x(x-2)-5
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)
\(b,5x^3y^2-25x^2y^3+40xy^4\)
\(=5xy^2\left(x^2-5xy+8y^2\right)\)
\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)
\(=-2x^2y^2\left(2x-3+4x^2y\right)\)
\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)
\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)
\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)
\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)
\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)
\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(a-b-c\right)\)
\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)
\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)
\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)
a,3x3y3−15x2y2=3x2y2(xy−5)a,3x3y3−15x2y2=3x2y2(xy−5)
b,5x3y2−25x2y3+40xy4b,5x3y2−25x2y3+40xy4
=5xy2(x2−5xy+8y2)=5xy2(x2−5xy+8y2)
c,−4x3y2+6x2y2−8x4y3c,−4x3y2+6x2y2−8x4y3
=−2x2y2(2x−3+4x2y)=−2x2y2(2x−3+4x2y)
d,a3x2y−52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y
=a3x2(y−52x2+23ay)=a3x2(y−52x2+23ay)
e,a(x+1)−b(x+1)=(x+1)(a−b)e,a(x+1)−b(x+1)=(x+1)(a−b)
f,2x(x−5y)+8y(5y−x)f,2x(x−5y)+8y(5y−x)
=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)
g,a(x2+1)+b(−1−x2)−c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)
=(x2+1)(a−b−c)=(x2+1)(a−b−c)
h,9(x−y)2−27(y−x)3h,9(x−y)2−27(y−x)3
=9(x−y)2+27(x−y)3
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)