K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Bài 1:

a, \(x^2-x-12\)

\(=x^2-4x+3x-12=\left(x^2-4x\right)+\left(3x-12\right)\)

\(=x.\left(x-4\right)+3.\left(x-4\right)=\left(x-4\right).\left(x+3\right)\)

b, \(x^2+8x+15\)

\(=x^2+3x+5x+15=\left(x^2+3x\right)+\left(5x+15\right)\)

\(=x.\left(x+3\right)+5.\left(x+3\right)=\left(x+3\right).\left(x+5\right)\)

c, \(x^{16}+x^8-2\)

\(=x^{16}-x^8+2x^8-2=\left(x^{16}-x^8\right)+\left(2x^8-2\right)\)

\(=x^8.\left(x^8-1\right)+2.\left(x^8-1\right)=\left(x^8-1\right)\left(x^8+2\right)\)

d, \(x^2+7x+12\)

\(=x^2+3x+4x+12=\left(x^2+3x\right)+\left(4x+12\right)\)

\(=x.\left(x+3\right)+4.\left(x+3\right)=\left(x+3\right).\left(x+4\right)\)

Chúc bạn học tốt!!!

10 tháng 6 2017

1,2,4 sử dụng Casio

(4x2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0

(4x2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0

(20x2+18x14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0

Đặt t= 20x2+18x+4(t0)20x2+18x+4(t≥0) ta có:

(t-18).t +17=0

t218t+17=0⇔t2−18t+17=0

(t17)(t1)=0⇔(t−17)(t−1)=0

[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) [20x2+18x+4=1720x2+18x+4=1[20x2+18x13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0

[(20x+9341)(20x+9+341)=0(20x+921)(20x+9+21)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0

x=9+34120x=934120x=9+2120x=92120

6 tháng 6 2019

\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)

\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)

\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)

Đặt ....

16 tháng 7 2019

\(x^5+y^5-\left(x+y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

9 tháng 6 2017

Rình mãi ms được 1 câu!

Bài 3:

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(A=\left[\left(x+1\right).\left(x+7\right)\right].\left[\left(x+3\right).\left(x+5\right)\right]+15\)

\(A=\left(x^2+7x+x+7\right).\left(x^2+5x+3x+15\right)+15\)

\(A=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+7\Rightarrow t+8=x^2+8x+15\)

\(\Rightarrow A=t.\left(t+8\right)+15\)

\(A=t^2+8t+15=t^2+3t+5t+15\)

\(A=\left(t^2+3t\right)+\left(5t+15\right)=t.\left(t+3\right)+5.\left(t+3\right)\)

\(A=\left(t+3\right).\left(t+5\right)\)

\(t=x^2+8x+7\) nên

\(A=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)

\(A=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)

\(A=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)

\(A=\left(x^2+8x+10\right).\left[\left(x^2+2x\right)+\left(6x+12\right)\right]\)

\(A=\left(x^2+8x+10\right).\left[x.\left(x+2\right)+6.\left(x+2\right)\right]\)

\(A=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)

Chúc bạn học tốt!!!

9 tháng 6 2017

học tốt gì ?????????

13 tháng 7 2015

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém 

Bài 1:Tínha) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)Bài 2:Phân tích đa thức thành nhân tửa) \(x^2-3x-15\)b) \(x^2-9x+4\)c) \(x^2-12x+32\)d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)e) \(x^4-2x^3-3x^2-4x-1\)f) \(x^3+x^2-x+2\)Bài 3: Cho x,y là các số thực...
Đọc tiếp

Bài 1:Tính

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)

b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)

c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)

d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)

Bài 2:Phân tích đa thức thành nhân tử

a) \(x^2-3x-15\)

b) \(x^2-9x+4\)

c) \(x^2-12x+32\)

d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

e) \(x^4-2x^3-3x^2-4x-1\)

f) \(x^3+x^2-x+2\)

Bài 3: Cho x,y là các số thực sao cho \(x+y\);\(x^2+y^2\);\(x^4+y^4\)là các số nguyên.CMR: \(2x^2y^2\)và \(x^3+y^3\)là các số nguyên

Bài 4: Rút gọn phân thức:

a) \(\frac{x^3+y^3+z^3\cdot3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

b) \(\frac{x^4-2x^2+1}{x^3-3x-2}\)

Bài 5:Cho \(abc=1\)

Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

Đề thi bắt đầu đến 11 h kế thúc có 1 giải 1 và 2 giải 2 thui nha cố lên nào giải 3 vô hạn nhưng trên 5 điểm

 

11
14 tháng 9 2019

a. \(=x^3+2^3+1^3-x^3\)

\(=\left(x^3-x^3\right)+8+1\)

\(=0+8+1\)

\(=9\)

14 tháng 9 2019

Bài 1 :

a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )

= ( x3 - 8 ) + ( 1 - x3 )

= x3 - 8 + 1 - x3

= 7

b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x

= 28x2 - 14x - x2 - x + 3x + 3 + 16x

= 27x2  + 3

7 tháng 1 2017

cho đáp án câu (a) lên lấy đáp án (a) => b 

7 tháng 1 2017

Giải ra dài lắm nên cho đáp án nè

a/ B = (z - x - y)(z - x + y)(z + x - y)(z + x + y)

b/ Nó là 3 cạnh tam giác nên

(z - x - y ) < 0

(z - x + y) > 0

(z + x - y) > 0

(z + x + y) > 0

Nên B < 0

10 tháng 2 2020

Bài 1 :

ĐKXĐ : \(2-x\ne0\)

=> \(x\ne2\)

Ta có :\(\frac{4x+1}{4\left(2-x\right)}\ge x+2\)

=> \(4x+1\ge4\left(x+2\right)\left(2-x\right)\)

=> \(4x+1\ge4\left(4-x^2\right)\)

=> \(4x+1\ge16-4x^2\)

=> \(4x^2+4x-15\ge0\)

=> \(4x^2+10x-6x-15\ge0\)

=> \(4x\left(x-1,5\right)+10\left(x-1,5\right)\ge0\)

=> \(\left(4x+10\right)\left(x-1,5\right)\ge0\)

=> \(\left[{}\begin{matrix}4x+10\ge0\\x-1,5\ge0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\ge-\frac{5}{2}\\x\ge\frac{3}{2}\end{matrix}\right.\)

=> \(x\ge\frac{3}{2}\)

Vậy tập nghiệm của bất phương trình trên là \(S=\left\{x|x\ge\frac{3}{2}\right\}\) .

10 tháng 2 2020

Bài 2:

Ta có: \(\left(a+b\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^4+b^4\right)-\left(a^2+b^2\right)\left(a^3+b^3\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^4+b^4\right)-\left(a^2+b^3\right)\left(a+b\right)\left(a^2-ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left[a^4+b^4-\left(a^2+b^2\right)\left(a^2-ab+b^2\right)\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left[a^4+b^4-a^4+a^3b-a^2b^2-a^2b^2+ab^3-b^4\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^3b+ab^3-a^2b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)ab\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)ab\left(a-b\right)^2\ge0\)

BĐT luôn đúng vì \(a>0;b>0\)\(\left(a-b\right)^2\ge0\forall a,b\)

Vậy ta có điều phải chứng minh.

Cũng chẳng biết có đánh lộn chỗ nào không nữa. Lần sau chia nhỏ ra.

15 tháng 1 2018

a)    \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b)   \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=ax^2+a-a^2x-x\)

\(=ax\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(ax-1\right)\)