Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = xy + y - 2x - 2
= y( x + 1 ) - 2( x + 1 )
= ( x + 1 )( y - 2 )
B = x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
C = 3x2 - 3xy - 5x + 5y
= 3x( x - y ) - 5( x - y )
= ( x - y )( 3x - 5 )
D = xy + 1 + x + y
= y( x + 1 ) + ( x + 1 )
= ( x + 1 )( y + 1 )
E = ax - bx + ab - x2
= ( ax - x2 ) + ( ab - bx )
= x( a - x ) + b( a - x )
= ( a - x )( x + b )
F = x2 + ab + ax + bx
= ( ax + x2 ) + ( ab + bx )
= x( a + x ) + b( a + x )
= ( a + x )( x + b )
G = a3 - a2x - ay + xy
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
Bonus : = ( a - x )[ a2 - ( √y )2 ]
= ( a - x )( a - √y )( a + √y )
H = 2xy + 3z + 6y + xz
= ( 6y + 2xy ) + ( 3z + xz )
= 2y( 3 + x ) + z( 3 + x )
= ( 3 + x )( 2y + z )
A = xy + y - 2x - 2 = y(x + 1) - 2(x + 1) = (y - 2)(x + !1
B = x2 - 3x + xy - 3y = x(x - 3) + y(x - 3) = (x + y)(x - 3)
C = 3x2 - 3xy - 5x + 5y = 3x(x - y) - 5(x - y) = (3x - 5)(x - y)
D = xy + 1 + x + y = xy + x + y + 1 = x(y + 1) + (y + 1) = (x + 1)(y + 1)
E = ax - bx + ab - x2 = ax - x2 + ab - bx = a(a - x) - b(a - x) = (a - b)(a - x)
F = x2 + ab + ax + bx = ab + ax + bx + x2 = a(b + x) + x(b + x) = (a + x)(b + x)
G = a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
H = 2xy + 3z + 6y + xz = 2xy + 6y + 3z + xz = 2y(x + 3) + z(x + 3) = (2y + z)(x + 3)
\(x^2-3x+xy-3y\)
\(=\left(x^2+xy\right)-\left(3x+3y\right)\)
\(=x.\left(x+y\right)-3.\left(x+y\right)\)
\(=\left(x-3\right).\left(x+y\right)\)
\(2x^2-x+2xy-y\)
\(=2x^2-\left(x-2xy+y\right)\)
\(=2x^2-\left(x-y\right)^2\)
\(=\left(\sqrt{2}x\right)^2-\left(x-y\right)^2\)
\(=\left(\sqrt{2}x-x+y\right).\left(\sqrt{2}x+x-y\right)\)
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x.\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left(x^2+1+x\right)\)
\(16+2xy-x^2-y^2\)
\(=16-x^2+2xy-y^2\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=[4-\left(x-y\right)].[4+\left(x-y\right)]\)
\(=\left(4-x+y\right).\left(4+x-y\right)\)
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
a) \(3x^2-3y^2=3\left(x^2-y^2\right)=3\left(x-y\right)\left(x+y\right)\)
b) \(x^2-xy+7x-7y=\left(x^2+7x\right)-\left(xy+7y\right)\)
\(=x\left(x+7\right)-x\left(y+7\right)=x\left(x+7-y-7\right)=x\left(x-y\right)\)
c)\(x^2-3x+2=x^2-2x-x+2=\left(x^2-x\right)-\left(2x-2\right)\)
\(=x\left(x-1\right)-2\left(x-1\right)=\left(x-2\right)\left(x-1\right)\)
d) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)\)
\(=x\left[\left(x+y\right)^2-16\right]=x\left(x+y-4\right)\left(x+y+4\right)\)