K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

c) a(b3 - c3) + b(c3 - a3) + c(a3 - b3)

= a(b3 - a3) + (b - a)(c3 - a3) + c(a3 - b3)

= (a3 - b3)(c - a) - (a - b)(c - a)(c2 + ca + a2)

= (a - b)(c - a)(ab + b2 - c2 - ca)

= (a - b)(c - a)(b - c)(a + b + c)

6 tháng 8 2020

b) Ta có:

a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

= a(b2 - a2) + (b - a)(c2 - a2) + c(a2 - b2)

= (a - b)(a + b)(c - a) - (a - b)(c - a)(c + a)

= (a - b)(b - c)(c - a)

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Bài 4:

a) Ta có: \(a^4+a^2+1\)

\(=a^4+2a^2+1-a^2\)

\(=\left(a^2+1\right)^2-a^2\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

b) Ta có: \(a^4+a^2-2\)

\(=a^4+2a^2-a^2-2\)

\(=a^2\left(a^2+2\right)-\left(a^2+2\right)\)

\(=\left(a^2+2\right)\left(a^2-1\right)\)

\(=\left(a^2+2\right)\left(a-1\right)\left(a+1\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+5x^2-x^2-5\)

\(=x^2\left(x^2+5\right)-\left(x^2+5\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)

d) Ta có: \(x^3-19x-30\)

\(=x^3-25x+6x-30\)

\(=x\left(x^2-25\right)+6\left(x-5\right)\)

\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

e) Ta có: \(x^3-7x-6\)

\(=x^3-4x-3x-6\)

\(=x\left(x^2-4\right)-3\left(x+2\right)\)

\(=x\left(x-2\right)\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x+2\right)\left(x^2-3x+x-3\right)\)

\(=\left(x+2\right)\left[x\left(x-3\right)+\left(x-3\right)\right]\)

\(=\left(x+2\right)\left(x-3\right)\left(x+1\right)\)

f) Ta có: \(x^3-5x^2-14x\)

\(=x\left(x^2-5x-14\right)\)

\(=x\left(x^2-7x+2x-14\right)\)

\(=x\left[x\left(x-7\right)+2\left(x-7\right)\right]\)

\(=x\left(x-7\right)\left(x+2\right)\)

2 tháng 3 2020

a. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t.\)Thay vào ta được :
\(\left(t+1\right)\left(t-1\right)-24\)

\(=t^2-1-24=t^2-25=\left(t+5\right)\left(t-5\right)\)

Thay \(t=x^2+7x+11\)Ta được :
\(\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

2 tháng 3 2020

a) - Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

    + Ta có: \(A=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)

      \(\Leftrightarrow A=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

    - Đặt \(a=x^2+7x+10\)

    + Ta lại có: \(A=a.\left(a+2\right)-24\)

               \(\Leftrightarrow A=a^2+2a-24\)

               \(\Leftrightarrow A=\left(a^2-4a\right)+\left(6a-24\right)\)

               \(\Leftrightarrow A=a.\left(a-4\right)+6.\left(a-4\right)\)

               \(\Leftrightarrow A=\left(a-4\right).\left(a+6\right)\)

    - Thay \(a=x^2+7x+10\)vào phương trình \(A\), ta có:

                     \(A=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)

              \(\Leftrightarrow A=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)

              \(\Leftrightarrow A=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)

              \(\Leftrightarrow A=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)

              \(\Leftrightarrow A=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)

^_^ Chúc bạn hok tốt ^_^ !!#@##

2 tháng 3 2020

a) Câu hỏi của a - Toán lớp 8 - Học toán với OnlineMath

b) Câu hỏi của c - Toán lớp 8 - Học toán với OnlineMath