Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=\left|x-2008\right|+\left|x-2009\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được:
\(A=\left|x-2008\right|+\left|2009-x\right|+\left|y-2010\right|+\left|x-2011\right|+2011\ge\left|x-2008+2009-x\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
\(\Rightarrow A=1+\left|y-2010\right|+\left|x-2011\right|+2011\)
\(\Rightarrow A=\left|y-2010\right|+\left|x-2011\right|+2012\)
Vì:
\(\left\{{}\begin{matrix}\left|y-2010\right|\ge0\\\left|x-2011\right|\ge0\end{matrix}\right.\forall x,y.\)
\(\Rightarrow\left|y-2010\right|+\left|x-2011\right|+2012\ge2012\) \(\forall x,y.\)
\(\Rightarrow A\ge2012.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}y-2010=0\\x-2011=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0+2010\\x=0+2011\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=2010\\x=2011\end{matrix}\right.\)
Vậy \(MIN_A=2012\) khi \(x=2011;y=2010.\)
Chúc bạn học tốt!
nè mình giúp được ko
bài 2:\(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{y}=1\)
\(\left(\frac{1}{x}+\frac{1}{x}\right)+\left(\frac{1}{y}+\frac{1}{y}\right)=1\)
\(\left(\frac{2}{x}\right)+\left(\frac{2}{y}\right)=1\)
\(\frac{4}{xy}=1\)
\(xy=4:1\)
xy = 4
làm mò chưa chắc chắn
Bn ghi tên mấy ng kia lm j cho mệt
Bn đừng nghĩ mấy ng điểm GP cao chỉ mới lm đc bài này