Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x+2x+...+50x =2550
x. [ 1+2+3+....+50]=2550
ta co :
so so hang cua day 1;2;3;4;...;50:
[50-1]:1+1=50
tong cua day tren la :
[50+1].50:2=1275
=> x.1275=2550
x=2550:1275
vay x=2
Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)
3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))
2A= \(3^{100}-3\)
theo bài ra ta có
2A+3=\(3^n\)= \(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100
a,A=3+32+33+34+...+31003A=32+33+34+35+31013A−A=2A=3101−3⇒2A+3=3101=34.25+1⇒n=25
Ta có : A = 3 + 32 + 33 + ..... + 3100
=> 3A = 32 + 33 + 34 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> 2A + 3 = 3101
=> x = 101
Vậy x = 101 .
\(A=3+3^2+3^3+........+3^{100}\)
\(3A=3^2+3^3+.......+3^{101}\)
\(3A-A=\left(3^2+3^3+........+3^{101}\right)-\left(3+3^2+3^3+........+3^{100}\right)\)
\(3A-A=3^2+3^3+........+3^{101}-3-3^2-3^3-........-3^{100}\)
=> \(2A=3^{101}-3\)
Sau đó làm tiếp
1+3+5+...+x=1600
=(x+1).[(x-1):2+1] /2 =1600
=(x+1).(x+1) /2 =1600
=(x+1)^2:2=40^2
=(x+1):2=40
=x+1=80
=x=79
Bài 1:
a) \(2^x+2^{x+3}=144\)
\(\Leftrightarrow 2^x+2^3.2^x=144\Leftrightarrow 2^x(1+2^3)=144\)
\(\Leftrightarrow 2^x=16\Leftrightarrow 2^x=2^4\Rightarrow x=4\)
b)
\(3^{2x+2}=9^{x+3}\)
\(\Leftrightarrow 3^{2x+2}=(3^2)^{x+3}=3^{2(x+3)}\)
\(\Rightarrow 2x+2=2(x+3)\Leftrightarrow 2=6\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn.
Bài 2:
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow 3A=3^2+3^3+3^4+..+3^{101}\)
Trừ theo vế:
\(3A-A=3^{101}-3\)
\(\Rightarrow 2A=3^{101}-3\)
Khi đó:
\(2A+3=3^n\Leftrightarrow 3^{101}-3+3=3^n\Leftrightarrow 3^{101}=3^n\)
\(\Rightarrow n=101\)