K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Bài 1 : 

1. a, 5\(^{2x-3}\)-2.5\(^2\)=5\(^2\).3

       5\(^{2x}\) : 5\(^3\) -2.25    = 25.3

       5\(^{2x}\):  5\(^3\) - 50      = 75

        5\(^{2x}\): 5\(^3\)            = 75+50

        5\(^{2x}\): 5\(^3\)            = 125

         5\(^{2x}\)                = 125.5\(^3\)

         5\(^{2x}\)                = 5\(^3\). 5\(^3\)

          5 \(^{2x}\)              = 5\(^{3+3}\)

          5 \(^{2x}\)               = 5\(^6\)  

Có 5=5 => 2x = 6

                  x = 6 : 2

                  x = 3

           Vậy x = 3.

b. / 2x -1 / = 5

=> 2x-1 = 5 hoặc 2x-1 = -5

* Với 2x - 1 = 5                                                                                      

thì     2x      = 5+1

        2x       = 6

          x       = 6:2

         x        = 3  

* Với 2x - 1 = - 5

thì     2x      = -5 + 1

         2x     = -4

           x      = -4 : 2

           x      = -2

13 tháng 6 2018

1/

a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120

=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)

=> 2A = 3^120 - 1

=> A = (3 ^120 - 1)/2

b/ 2A + 1 = 27x

<=> 3^120 = 27x

<=> 27^40 = 27x

<=> x = 40

c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)

= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)

= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)

= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5

+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)

= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)

= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)

= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13

13 tháng 6 2018

2b

Câu hỏi của Raf - Toán lớp 6 - Học toán với OnlineMath

Câu 1 : Thực hiện phép tính 1 cách hợp lý : a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\) b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\) c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\) d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\) Câu 2 : a) 12 ( x - 5 ) = 7x - 5 b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x...
Đọc tiếp

Câu 1 : Thực hiện phép tính 1 cách hợp lý :

a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\)

b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\)

c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\)

d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\)

Câu 2 :

a) 12 ( x - 5 ) = 7x - 5

b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x - 3 ) 2012

Câu 3 :

1) Cho biểu thức S = 1 + 3 + 32 + 33 +...+ 3202 + 3 203

a) chứng tỏ rằng tổng S chia hết cho 52 .

b) Tìm Chữ số tận cùng trong tổng S .

2 ) Cho biểu thức A= \(\dfrac{2n+1}{2n+5}\) . Chứng tỏ rằng với mọi số tự nhiên n thì A là phân số tối giản .

Câu 4 : So sánh tổng gồm 1006 số hạng :

\(S=\dfrac{1}{1.1.3}+\dfrac{1}{2.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{1006.2011.2013}\) với \(\dfrac{2}{3}\)

1
10 tháng 12 2022

Câu 2:

a: \(\Leftrightarrow12x-60=7x-5\)

=>5x=55

=>x=11

b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)

=>(2x-3)(2x-2)(2x-4)=0

hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)

23 tháng 2 2019

Câu hỏi của Kz9 - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo câu b ở link này nhé

23 tháng 2 2019

ok chj

1 tháng 1 2017

co ban nao choi chinh phuc vu mon cho minh muon nick

10 tháng 12 2017

Bài 1 : Theo đề ta có :

    5x . 5x+1 . 5x+2  \(\le\)100....000 ( 18 chữ số 0 ) : 218            ( x \(\in\)N )

=> 5x+x+1+x+2       \(\le\)1018 : 218 

=> 53x+3                \(\le\)518        

=> 3x + 3              \(\le\)18

=> 3x                    \(\le\)15 

=>         x              \(\le\)5

Mà x \(\in\)N nên x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 } 

Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }

Bài 2 : Ta có :

S = 1 + 2 + 22 + 2+ ... + 22005 

2S = 2 + 22 + 2+ 2+ ... + 22006                 ( Nhân 2 các số hạng trong tổng )

S = 2S - S = ( 2 + 2+ 23 + 24 + ... + 22006  ) - ( 1 + 2 + 2+ 23 + .. + 22005 )

   = 22006 - 1        ( Triệt tiệu các số hạng giống nhau )

=> S < 22006 

Mặt khác 5 . 22004 > 4 . 22004  = 2 . 22004  = 22006 

          => 5 . 22004  > 22006

Do đó S < 5. 22004 

Vậy S < 5 . 22004 

17 tháng 7 2018

Các bạn ghi rõ cách giải nhé

8 tháng 11 2019

=xnxx+sex+18+