K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

Bài 1:

Ta có:

\(p=42k+r=2.3.7.k+r\left(k,r\in N;0< r< 42\right)\)

\(p\) là số nguyên tố nên \(r\) \(⋮̸\) \(2;3;7\)

Các hợp tố nhỏ hơn \(42\)\(⋮̸\) \(2\) là:

\(9;15;21;25;27;33;35;39\)

Loại đi các số chia hết cho \(3\) ta có các số:

\(25;35\)

Loại đi các số chia hết cho \(7\) ta có các số:

\(25\)

\(\Rightarrow r=25\)

Vậy \(r=25\)

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
14 tháng 4 2017

Giải:

\(\overline{abcd},\overline{ab}\)\(\overline{ac}\) là các số nguyên tố

\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)

Ta có:

\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)

\(=10c+d-c=10c-c+d=9c+d\)

Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)

\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)

Ta có các trường hợp sau:

\(*)\) Nếu \(b=7\) ta có:

\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)

Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)

Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)

\(*)\) Nếu \(b=9\) ta có:

\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)

\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)

\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)

\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)

Mặt khác \(a\ne0\Rightarrow a=1\)

Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

14 tháng 4 2017

giống hệt bài giải mẫu trên mạng

6 tháng 1 2017

HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

6 tháng 1 2017

giải dài dòng lắm

x=8

y=5

2 tháng 4 2017

a) Ta có:

\(p=42k+r=2.3.7.k+r\left(k,r\in N;0< r< 42\right)\)

\(p\) là số nguyên tố nên \(p\) \(⋮̸\) \(2;3;7\)

Các hợp số bé hơn \(42\) và không chia hết cho \(2\) là:

\(9;15;21;25;27;33;35;39\)

Lại đi các số không chia hết cho \(3;7\) ta được \(r=25\)

Vậy \(r=25\)

b) Giải:

\(\overline{ab}^2\) là số chính phương nên \(\left(a+b\right)^3\) là số chính phương

\(\Rightarrow a+b\) là số chính phương.

Đặt \(a+b=x^2\Rightarrow\left(a+b\right)^3=\left(x^2\right)^3=x^6\)

\(\Rightarrow\left\{{}\begin{matrix}x^3< 100\\x^3>8\end{matrix}\right.\)\(\Rightarrow8< x^3< 100\Rightarrow2< x^3< 5\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)\(x\in N\). Xét từng trường hợp ta có:

Nếu \(x=3\Rightarrow3^6=729=27^2=\left(2+7\right)^3\) (chọn)

Nếu \(x=4\Rightarrow4^6=4096=64^2\ne\left(6+4\right)^3\) (loại)

Vậy số tự nhiên cần tìm là \(27\)

17 tháng 3 2018

a, Giả sử tồn tại a,b thỏa mãn đề bài

Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Rightarrow\frac{-\left(a-b\right)}{ab}=\frac{1}{a-b}\)

\(\Rightarrow-\left(a-b\right)^2=ab\)

Vì \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow-\left(a-b\right)^2\le0\forall a,b\)

Mà a,b là số nguyên dương => ab > 0

=> Mâu thuẫn

=> Giả sử sai

Vậy không tồn tại a,b thỏa mãn đề

b, https://olm.vn/hoi-dap/question/1231.html

ko hieu cau 3 lam

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước