Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
a) 5 . 6 . 7 + 8 . 9
ta có :
5 . 6 . 7 chia hết cho 3
8 . 9 chia hết cho 3
=> 5 . 6 . 7 + 8 . 9 chia hết cho 3 và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số
b 5 . 7 . 9 . 11 - 2 . 3 . 7
ta có :
5 . 7 . 9 . 11 chia hết cho 7
2 . 3 . 7 chia hết cho 7
=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số
c) 5 . 7 . 11 + 13 . 17 . 19 chia hết cho 2 vì hai số lẻ cộng lại sẽ thành số chẵn
Mà số chẵn chia hết cho 2
vậy 5 . 7 . 11 + 13 . 17 . 19 là hợp số
d) 4253 + 1422
tổng trên có tận cùng là 5 thì chia hết cho 5
vậy 4253 + 1422 là hợp số
thiếu câu e vs bài 2 nhưng bn làm đúng r nên mk k nhé
~Chúc bn học tốt ;3
Số nguyên tố là số chỉ có 2 ước là 1 và chính nó. Số 2; 3; 5; 7 là các số nguyên tố nhỏ nhất Hợp số là số có nhiều hơn 2 ước. Muốn phân biệt được số nguyên tố và hợp số ta phải: - --- -Thuộc lòng dấu hiệu chia hết cho 2; 3; 5; 7
Số nguyên tố là số tự nhiên lớn hơn 1 không phải là tích của hai số tự nhiên nhỏ hơn. Nói cách khác, số nguyên tố là những số chỉ có đúng hai ước số là 1 và chính nó. Các số tự nhiên lớn hơn 1 không phải là số nguyên tố được gọi là các hợp số.
Bài 1 :
a) \(123456789+729=\text{123457518}⋮2\)
⇒ Số trên là hợp số
b)\(5.7.8.9.11-132=\text{27588}⋮2\)
⇒ Số trên là hợp số
Bài 2 :
a) \(P+2\&P+4\) ;à số nguyên tố
\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)
\(\Rightarrow P=-3\)
Câu b tương tự
a,123456789+729=123457518(hợp số)
b,5x7x8x9x11-132=27588(hợp số)
Bài 2,
a,Nếu P=2=>p+2=4 và p+4=6 (loại)
Nếu P=3=>p+2=5 và p+4=7(t/m)
P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)
Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)
Nếu p=3k+2=>p+4=3k+6⋮3(loại)
Vậy p=3 thỏa mãn đề bài
b,Nếu p=2=>p+10=12 và p+14=16(loại)
Nếu p=3=>p+10=13 và p+14=17(t/m)
Nếu p >3=>p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>p+14=3k+15⋮3(loại)
Nếu p=3k+2=>p+10=3k+12⋮3(loại)
Vậy p=3 thỏa mãn đề bài.
Bài 2:
a: Trường hợp 1: p=3
=>p+2=5 và p+4=7(nhận)
Trường hợp 2: p=3k+1
=>p+2=3k+3=3(k+1) không là số nguyên tố
=>loại
Trường hợp 3: p=3k+2
=>p+4=3k+6=3(k+2) không là số nguyên tố
=>Loại
Vậy: p=3
b: Trường hợp 1: p=3
=>p+10=13 và p+14=17(nhận)
Trường hợp 2: p=3k+1
=>p+14=3k+15=3(k+5) không là số nguyên tố
=>Loại
Trường hợp 3: p=3k+2
=>p+10=3k+12=3(k+4) không là số nguyên tố
=>Loại
Vậy: p=3
mình chỉ ghi theo cách mình hiểu thôi nha.
Bài 1:
a, 46620=22.32.5.7.37
=4.9.5.7.37
=36.35.37
Vậy 46620=35.36.37
mình nghĩ câu B là số tự nhiên lẻ liên tiếp
b, 12075=3.52.7.23
=3.25.7.23
=21.25.23
Vậy 12075=21.23.25