K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

1) b) cos5x + cos3x + cosx = 0

<=> (cos5x + cos3x) + cosx = 0

<=> 2.cos4x.cos(-x) + cosx = 0

<=> cosx (2cos4x + 1) = 0

<=> cosx = 0 or 2cos4x + 1 = 0

<=> x = π/2 + kπ or cos4x = 1/2

<=> x = π/2 + kπ or 4x = \(\pm\)π/3 + kπ

<=> x = π/2 + kπ or x = \(\pm\)π/12 + kπ/4 (k thuộc Z)

Vậy ...

24 tháng 7 2019

Ai giúp mình với đang cần gấp mà khó quá :(

NV
20 tháng 9 2020

1.

Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)

\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)

2.

a.

\(y=cos^22x+3cos2x+3\)

\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)

\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)

b.

Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)

\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)

\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

21 tháng 9 2020

Em ko hiểu câu 2a

NV
31 tháng 7 2020

Số hạng tổng quát trong khai triển: \(C_n^k2^kx^{n-k}\) với \(n=1000\)

Hệ số của số hạng thứ k là: \(C_n^k2^k\)

Hệ số này là lớn nhất khi và chỉ khi: \(\left\{{}\begin{matrix}C_n^k2^k\ge C_n^{k+1}2^{k+1}\\C_n^k2^k\ge C_n^{k-1}2^{k-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{n!}{k!\left(n-k\right)!}\ge\frac{n!.2}{\left(k+1\right)!\left(n-k-1\right)!}\\\frac{n!.2}{k!\left(n-k\right)!}\ge\frac{n!}{\left(k-1\right)!\left(n-k+1\right)!}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k+1\ge2\left(n-k\right)\\2\left(n-k+1\right)\ge k\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ge\frac{2n-1}{3}=\frac{1999}{3}\\k\le\frac{2n+2}{3}=\frac{2002}{3}\end{matrix}\right.\)

\(\Rightarrow k=667\)

Vậy hệ số lớn nhất là \(C_{100}^{667}2^{667}\)

Câu 2 :Cho đường tròn ( C ) : ( x + 1 )2 + ( y – 2 )2 = 9 . Phép tịnh tiến theo vecto v = ( 1; -2 ) biến đường tròn ( C ) thành đường tròn C’ ( I’;R’) Câu 3: Cho đường tròn ( C ): x2 + y2 – 2x – 8 = 0 . V(0;-2) ( C ) = ( C’ ) . Tính diện tích hình tròn ( C’) Câu 4 : Trong mặt phẳng Oxy , cho tam giác ABC có A( 1;-2) , B(-1;6) , C( -6;2) . Phép vị tự tâm O tỉ số k=-1/2 biến tam giác ABC thành tam giác A’B’C’ . Tìm...
Đọc tiếp

Câu 2 :Cho đường tròn ( C ) : ( x + 1 )2 + ( y – 2 )2 = 9 . Phép tịnh tiến theo vecto v = ( 1; -2 ) biến đường tròn ( C ) thành đường tròn C’ ( I’;R’)

Câu 3: Cho đường tròn ( C ): x2 + y2 – 2x – 8 = 0 . V(0;-2) ( C ) = ( C’ ) . Tính diện tích hình tròn ( C’)

Câu 4 : Trong mặt phẳng Oxy , cho tam giác ABC có A( 1;-2) , B(-1;6) , C( -6;2) . Phép vị tự tâm O tỉ số k=-1/2 biến tam giác ABC thành tam giác A’B’C’ . Tìm trọng tâm của tam giác ABC

Câu 5 : Trong mặt phẳng Oxy , cho hai đường thẳng d : x-3y+3=0 và d’: x-3y+6=0 . Tìm tọa độ vecto v có phương vuông góc với d để Tv(d) = d’

Câu 6 : cho đường thẳng d : 2x-3y+1=0 . Xét Q(0;90) (d) =d’ . Tìm vecto chỉ phương u của đường thẳng d’

Câu 7 : Cho phép vị tự tâm A tỉ số k=2 biến điểm M thành M’

Câu 8 : Trong mặt phẳng Oxy, cho A ( 1;5) , B(3;3) . Phép đồng dạng tỉ số k=1/2 biến A thành A’ biến điểm B thành B’ . Tính độ dài A’B’

Câu 9 :Cho đường tròn ( C ) : x2+(y-1)2=8 . Tìm Ảnh của ( C ) qua phép tâm quay tâm O góc -90 độ

Câu 10: Cho đường thẳng denta : x-2y+3=0 và vecto u =(2;-1) .Tu(denta)=(denta’)

1

Câu 2: 

\(\left(x+1\right)^2+\left(y-2\right)^2=9\)

=>R=3 và I(-1;2)

Tọa độ I' là:

x=-1+1=0 và y=2-2=0

=>Phương trình (C') là: x^2+y^2=9

Câu 3: 

\(V_{\left(O;-2\right)}\left(C\right)=\left(C'\right)\)

\(x^2+y^2-2x-8=0\)

=>x^2-2x+1+y^2=9

=>(x-1)^2+y^2=9

=>R=3 và I(1;0)

Tọa độ I' là:

\(\left\{{}\begin{matrix}x=1\cdot\left(-2\right)=-2\\y=0\cdot\left(-2\right)=0\end{matrix}\right.\)

Độ dài R' là:

\(R=3\cdot\left|-2\right|=6\)

Tọa độ (C') là:

\(\left(x+2\right)^2+y^2=36\)

27 tháng 7 2019
https://i.imgur.com/SaTfbgV.jpg
27 tháng 7 2019
https://i.imgur.com/lo0BB8k.jpg