K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

a) 2 (x + 5) - x2 - 5x = 0

=> 2 (x + 5) - (x2 + 5x) = 0

=> 2 (x + 5) - x (x + 5) = 0

=> (2 - x) (x + 5) = 0

Có 2 TH xảy ra :

TH1 : 2 - x = 0 => x = 2

TH2 : x + 5 = 0 => x = -5

 

2 tháng 4 2017

a, 2\((\)x +5\()\) - x2 - 5x =0

\(\Leftrightarrow\) 2x2 +10-x2 - 5x=0

\(\Leftrightarrow\)x2 - 5x +10=0

\(\Delta'\) = \((\) -5\()\)2 - 1. 10=15 \(\Rightarrow\) \(\sqrt{\Delta'}\) = \(\sqrt{15}\)

\(\Rightarrow\) x1 = 5 + \(\sqrt{15}\) ; x2 = 5- \(\sqrt{15}\)

pt có 2 nghiệm ........

b, 2x2 + 3x -5 =0

có a+b+c= 2+3+ \((\) -5\()\) =0

\(\Rightarrow\) x1=1 , x2 =\(\dfrac{-5}{2}\)

c, \((\) x-1\()\)2 + 4.\((x+2)\) - \((x^2-3)\)=0

\(\Rightarrow x^2-2x+1+4x+8-x^{2^{ }}+3=0\)

\(\Leftrightarrow\) -2x +12 =0

\(\Leftrightarrow\)-2x=-12\(\Leftrightarrow\) x= 6

21 tháng 2 2016

xem lại câu 1

 

 

Bài 1: 

\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)

Để phương trình có hai nghiệm phân biệt thì -4m+13>0

=>-4m>-13

hay m<13/4

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-1\)

nên m-1=2

hay m=3

Bài 2:

\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)

\(=4m^2-16m+16+8m-4\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

Bài 1: 

\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)

Để phương trình có hai nghiệm phân biệt thì -4m+13>0

=>-4m>-13

hay m<13/4

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-1\)

nên m-1=2

hay m=3

Bài 2:

\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)

\(=4m^2-16m+16+8m-4\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

30 tháng 5 2017

1.

đk để pt có nghiệm \(\Delta\)>0 \(\Leftrightarrow\) (-3)2 -4(m-1) >0 \(\Leftrightarrow m< \dfrac{13}{4}\)

theo viet ta có :\(\left\{{}\begin{matrix}x_1+x_2=3\left(1\right)\\x_1\cdot_{ }x_2=m-1\left(2\right)\end{matrix}\right.\)

có 2x1-5x2=-8 (3)

kết hợp (1) , (3) :\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5x_1+5x_2=15\\2x_1-5x_2=-8\end{matrix}\right.\)

cộng vế trên cho vế dưới :7x1=7\(\Rightarrow\)x1=1

có (1) : x1+x2=3 \(\Rightarrow\) x2=3-x1\(\Rightarrow\)x2=3-1=2

thay x1 và x2 vừa tìm đc vào (2) ta đươc \(1\cdot2=m-1\Leftrightarrow m=3\)(tm)

vậy m=3

30 tháng 5 2017

2. đk để pt có 2 ng dương

\(\left\{{}\begin{matrix}\Delta'\ge0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-4\left(-2m+1\right)\ge0\\x_1+x_2=-2\left(m-2\right)>0\\x_1\cdot x_2=-2m+1>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge0\forall m\\m< 2\\m< \dfrac{1}{ }\end{matrix}\right.\)\(\Leftrightarrow m< \dfrac{1}{2}\) = 0,5

vậy m < 0,5

24 tháng 5 2017

2/

Xét pt (1) có:

\(\Delta=4\left(m-2\right)^2-4.\left(-2m+1\right)\)

= \(4m^2-8m+12\)

= \(\left(2m-2\right)^2+8\)

Ta có: \(\left(2m-2\right)^2\ge0\) với mọi m

\(\Rightarrow\left(2m-2\right)^2+8>0\) với mọi m

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi m

Áp ụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=4-2m\\x_1.x_2=1-2m\end{matrix}\right.\)

Để pt có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-2m>0\\1-2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{1}{2}\)

Vậy với \(m< \dfrac{1}{2}\) thì pt đã cho có 2 nghiệm dương

Bài 1: 

\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)

Để phương trình có hai nghiệm phân biệt thì -4m+13>0

=>-4m>-13

hay m<13/4

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-1\)

nên m-1=2

hay m=3

Bài 2:

\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)

\(=4m^2-16m+16+8m-4\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

5 tháng 6 2017

Bài 2:

\(x^2+2\left(m-2\right)x-2m+1=0\left(1\right)\)

Xét phương trình(1) có:

\(\Delta=4\left(m-2\right)^2-4\left(1-2m\right)\)

= \(4m^2-8m+12\)

= \(\left(2m-2\right)^2+8\)

Ta có: \(\left(2m-2\right)^2>0\) với mọi m

\(\Rightarrow\left(2m-2\right)^2+8>0\) với mọi m

\(\Leftrightarrow\Delta>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=4-2m\\x_1.x_2=1-2m\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-2m>0\\1-2m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{1}{2}\)

Vậy với \(m< \dfrac{1}{2}\) thì phương trình đã cho có 2 nghiệm dương

Bài 1: 

\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)

Để phương trình có hai nghiệm phân biệt thì -4m+13>0

=>-4m>-13

hay m<13/4

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m-1\)

nên m-1=2

hay m=3

Bài 2:

\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)

\(=4m^2-16m+16+8m-4\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

29 tháng 1 2020

Toán lớp 6????

😨😨😨

29 tháng 1 2020

Sorry cmt nhầm đừng để ý 😩😩😩