K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) Phương trình 1,5x2 – 1,6x + 0,1 = 0

Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 = \(\dfrac{0,1}{15}\)

c) \(\left(2-\sqrt{3}\right)x^2+2\sqrt{3x}-\left(2+\sqrt{3}\right)=0\)

\(a+b+c=2-\sqrt{3}+2\sqrt{3}-\left(2+\sqrt{3}\right)=0\)

Nên x1 = 1, x2 = \(\dfrac{-\left(2+\sqrt{3}\right)}{2-\sqrt{3}}\) = -(2 + \(\sqrt{3}\))2 = -7 - 4\(\sqrt{3}\)

d) (m – 1)x2 – (2m + 3)x + m + 4 = 0

Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0

Nên x1 = 1, x2 = \(\dfrac{m+4}{m-1}\)

4 tháng 4 2017

a) Phương trình 1,5x2 – 1,6x + 0,1 = 0

Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 =

b) Phương trình √3x2 – (1 - √3)x – 1 = 0

Có a – b + c = √3 + (1 - √3) + (-1) = 0 nên x1 = -1, x2 = =

c) (2 - √3)x2 + 2√3x – (2 + √3) = 0

Có a + b + c = 2 - √3 + 2√3 – (2 + √3) = 0

Nên x1 = 1, x2 = = -(2 + √3)2 = -7 - 4√3

d) (m – 1)x2 – (2m + 3)x + m + 4 = 0

Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0

Nên x1 = 1, x2 =

Nhiều thế, chắc phải đưa ra đáp thôi

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

17 tháng 1 2016

<=>2x\(\sqrt{x^2+4}\)+2\(\sqrt{x^2+4}\)=x\(^2\)-x-2

=>2x\(\sqrt{x^2+4}\)+2\(\sqrt{x^2+4}\)-x2+x+2=0

=>(x+1)(2\(\sqrt{x^2+4}\)-x+2)=0

=>2\(\sqrt{x^2+4}\)-x+2=0

=>x=-1

17 tháng 1 2016

thắng bạn giải cho tiết được ko

13 tháng 11 2018

Nghĩ đc bài nào làm bài đấy ^^

\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)

\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)

\(\Leftrightarrow x-2mx=m^2+3\)

\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)

*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)

Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)

Pt vô nghiệm

*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)

Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)

Kết hợp ĐKXĐ \(x^2+x-3\ge0\)

                    \(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)

Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2

=> KL

13 tháng 11 2018

2) ĐKXĐ : -1 < x < 8

 Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)

\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)

Khi đó \(a+\frac{a^2-9}{2}=m\)

 \(\Leftrightarrow2a+a^2-9=2m\)

\(\Leftrightarrow a^2+2a-9-2m=0\)(1)

Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)

Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)

Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)

           \(\Leftrightarrow a^2+2a-9\ge-10\)

            \(\Leftrightarrow a^2+2a+1\ge0\)

            \(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)

Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 8

       * với m < -5 thì pt vô nghiệm

P/S: chả bt cách này đúng ko nx =.='