Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi máy cái này tìm GTNN thì làm sao mà tìm được ! Đề bạn sai rồi ! Đây mình làm theo tìm GTLN nha !
Bài 1 : Bài giải
\(A=\frac{5}{7}-\left|3x-2\right|\)
A đạt GTLN khi \(\left|3x-2\right|\) đạt GTNN.
Mà \(\left|3x-2\right|\ge0\) Dấu " = " xảy ra khi \(3x-2=0\) \(\Rightarrow\text{ }3x=2\) \(\Rightarrow\text{ }x=\frac{2}{3}\)
\(\Rightarrow\text{ }\frac{5}{7}-\left|3x-2\right|\le0\)
Vậy Max \(\frac{5}{7}-\left|3x-2\right|=\frac{5}{7}\) khi \(x=\frac{2}{3}\)
\(A=\left|x-500\right|+\left|x-300\right|\)
\(\ge\left|x-500+300-x\right|=200\)
\(\Rightarrow A\ge200\)
Dấu = khi \(\left(x-500\right)\left(x-300\right)\ge0\)\(\Rightarrow300\le x\le500\)
\(\Rightarrow\begin{cases}300\le x\le500\\\left(x-500\right)\left(x-300\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=500\\x=300\end{cases}\)
Vậy MinA=200 khi \(\begin{cases}x=500\\x=300\end{cases}\)
a) Vì 2 vế ko âm nên bình phương cả 2 vế ta dc :
\(\left|x+y\right|^2\le\left|x\right|^2+\left|y\right|^2\)
\(\Rightarrow\left(x+y\right).\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)
\(\Rightarrow x^2+2xy+y^2\le x^2+2\left|x\right|\left|y\right|+y^2\)
\(\Rightarrow xy\le\left|xy\right|\) (Luôn đúng với mọi \(x,y\))
Vậy bất đẳng thức trên đúng. Dấu "=" xảy ra khi \(\left|xy\right|=xy\) \(\Leftrightarrow x,y\) cùng dấu
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\rightarrowđpcm\)
b) Áp dụng câu a ta có :
\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\Rightarrow\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Vậy \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\rightarrowđpcm\)
Do \(x+y+z=0;-1\le x,y,z\le1\)
Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu
Giả sử : \(x\ge0;y\ge0;z\le0\)
Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)
\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)
\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)
Vậy : \(x^2+y^4+z^6\le2\)
a) Ta có : \(|x+y|\le|x|+|y|\)
\(\Leftrightarrow\left(x+y\right)^2\le\left(|x|+|y|\right)^2\)
\(\Leftrightarrow x^2+2.x.y+y^2\le x^2+2.|x|.|y|+y^2\)
\(\Leftrightarrow xy\le|x||y|\)
Do bất đẳng thức cuối đúng nên bất đẳng thức đầu đúng.
Dấu bằng xảy ra khi \(xy=|x||y|\Rightarrow xy\ge0\)
b) Từ câu (a) ta có: \(|x-y|+|y|\ge|x-y+y|=|x|\)
\(\Rightarrow|x-y|\ge|x|-|y|\)
Dấu bằng xảy ra khi A-B và B cùng dấu.