K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

x + y + z = 0 \(\Rightarrow\) x = - ( y + z )

\(\Rightarrow\) \(x^2\) = \((y+z)^2\) = \(y^2\) + \(z^2 \) + 2yz

\(\Rightarrow\) \(x^2\) - \(y^2\) - \(z^2 \) = 2xy

\(\Rightarrow\) (\(x^2-y^2-z^2\) )\(^2 \) = \((2xy)^2\)= \(4x^2y^2\)

\(\Rightarrow\) \(x^4 + y^4 + z^4\) - \(2x^2y^2\) - \(2x^2z^2\) = \(4x^2y^2\)

\(\Rightarrow\) \(x^4+y^4+z^4\) = \(4y^2z^2\) - \(2y^2z^2\) + \(2x^2y^2\) = \(2x^2y^2 + 2y^2z^2+ 2x^2z^2\)

\(\Rightarrow\) 2 (\(x^4+y^4+z^4\) ) = \((x^2+y^2+z^2)^2\) (đpcm)

5 tháng 11 2018

\(x+y+z=0\Rightarrow x=-\left(y+z\right)\)

\(\Rightarrow x^2=\left(y+z\right)^2=y^2+z^2+2yz\)

\(\Rightarrow x^2-y^2-z^2=2xy\)

\(\Rightarrow\left(x^2-y^2-z^2\right)^2=\left(2xy\right)^2=4x^2y^2\)

\(\Rightarrow x^4+y^4+z^4-2x^2y^2-2x^2z^2+2y^2z^2=4x^2y^2\)

\(\Rightarrow x^4+y^4+x^4=4y^2z^2-2y^2z^2+2x^2z^2+2x^2y^2=2x^2y^2+2y^2z^2+2x^2z^2\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

28 tháng 8 2017

em lp 6  a ơi

7 tháng 11 2018

C2 là = 8xyz nha mình viết nhầm

18 tháng 11 2022

Câu 2: 

\(\left\{{}\begin{matrix}y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\\x+y>=2\sqrt{xy}\end{matrix}\right.\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)>=8xyz\)

Dấu = xảy ra khi x=y=z

20 tháng 12 2017

a,  Ta có: \(B=x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2\)

\(=x^4+y^4+z^4-2x^2y^2-2z^2x^2+2y^2z^2-4y^2z^2\)

\(=\left(x^2-y^2-z^2\right)^2-4y^2z^2\) \(=\left(x^2-y^2-z^2-2yz\right)\left(x^2-y^2-z^2+2yz\right)\)

\(=\left[x^2-\left(y+z\right)^2\right]\left[x^2-\left(y-z\right)^2\right]\)

\(=\left(x-y-z\right)\left(x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\)

b, Nếu x,y,z là ba cạnh tam giác. áp dụng BĐT tam giác ta có:

\(x-y-z=x-\left(y+z\right)< 0\)

\(\hept{\begin{cases}x+y+z>0\\x+z-y>0\\x+y-z>0\end{cases}}\)

=> B < 0 => đpcm

Trả lời cho mình câu này nữa nhé

https://olm.vn/hoi-dap/question/1115850.html

2 tháng 9 2018

Ta có :  \(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\)

\(\Rightarrow\left(x^2+y^2+z^2\right)^2=\left[-2\left(xy+yz+xz\right)\right]^2\)

\(\Rightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+x^2z^2\right)=4\left(x^2y^2+y^2z^2+x^2z^2\right)+2xyz\left(x+y+z\right)\)

Suy ra : \(x^4+y^4+z^4=2\left(x^2y^2+y^2z^2+x^2z^2\right)\)

29 tháng 8 2019

TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài